Skip to main content

A New Reciprocal Space Based Method for Treating Long Range Interactions in Ab Initio and Force-Field Based Calculations for Surfaces, Wires, and Clusters

  • Conference paper

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 24))

Abstract

A new formalism designed to treat long range forces in calculations of surfaces, systems which are infinitely replicated in two spatial directions and have a finite extent in the third, wires, systems which are infinitely replicated in one spatial direction and have a finite extent in the other two, and clusters, systems which are finite in all three spatial directions, is presented. The new formalism is based in reciprocal space and, therefore, permits straightforward extension of plane-wave based density functional theory, Ewald summation, and smooth particle-mesh Ewald methods to handle systems with less than three-dimensional periodicity. The new method is very easily implemented and will be demonstrated to yield a numerically accurate and efficient algorithm for performing calculations on both model and realistic examples of systems with reduced periodicity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sangster, M. J. L. and Dixon, M.: Adv. in Phys. 3 (1976) 247.

    Article  Google Scholar 

  2. de Leeuw, S. W., Perram, J. W., and Smith, E. R.: Proc. R. Soc. London A 373 (1980) 27.

    Article  Google Scholar 

  3. Hansen, J. P.: Molecular dynamics simulation of Coulomb systems in Molecular dynamics simulation of statistical mechanical systems, North Holland Physics, Amsterdam (1986).

    Google Scholar 

  4. Allen, M. P. and Tildesley, D. J.: Computer simulation of liquids, Clarendon Press, Oxford (1989).

    Google Scholar 

  5. Essman, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H. and Pedersen, L. G. J. Chem. Phys. 103 (1995) 8577.

    Article  Google Scholar 

  6. Darden, T. A., Toukmaji, A., and Pedersen, L. G., J. Chim. Phys. 94 (1997) 1346–1364.

    CAS  Google Scholar 

  7. Pollock, E. L., and Glosli, J.  Comp. Phys. Comm. 95 (1996) 93.

    Article  CAS  Google Scholar 

  8. Car, R. and Parrinello, M.: Phys. Rev. Lett. 55 (1985) 2471.

    Article  PubMed  CAS  Google Scholar 

  9. Galli, G. and Parrinello, M.: Ab initio molecular dynamics: Principles and practical implementation in Computer Simulation in Materials Science, 3 (1991) 283.

    Article  Google Scholar 

  10. Remler, D. K. and Madden, P. A.:  Mol. Phys. 70 (1990) 921.

    Article  CAS  Google Scholar 

  11. Meyer, R. R., Sloan, J., Dunin-Borkowski, R. E., Kirkland, A. L, Novotny, M. C, Bailey, S. R., Hutchison, J. L., Green, M. L. H.: Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes, Science 289 (2000) 1325–1326.

    Article  Google Scholar 

  12. Hautman, J. and Klein, M. L.,  Mol. Phys. 75 (1992) 379.

    Article  CAS  Google Scholar 

  13. Widmann, A. H. and Adolf, D. B., Comp. Phys. Comm. 107 (1997) 167–186.

    Article  CAS  Google Scholar 

  14. Kuwajima, S. and Warshel, A., J. Chem. Phys. 89, 3751 (1988).

    Article  CAS  Google Scholar 

  15. Yarne, D. A., Tuckerman, M. E. and Martyna, G. J., J. Chem. Phys. (in press).

    Google Scholar 

  16. Hockney, R. W. and Eastwood, J. W. Computer Simulation using Particles, McGraw-Hill, New York, (1981).

    Google Scholar 

  17. Jackson, J. D., Classical Electrodynamics, John Wiley and Sons, New York (1975).

    Google Scholar 

  18. Martyna, G. J. and Tuckerman, M. E., J. Chem. Phys. 110, 2810 (1999).

    Article  CAS  Google Scholar 

  19. Hohenberg, P. and Kohn, W. Phys. Rev. B 136 (1964) 86.

    Google Scholar 

  20. Kohn, W. and Sham, L. J. Phys. Rev. A 140 (1965) 140.

    Google Scholar 

  21. Lundqvist, S. and March, N. H. Theory of the Inhomogeneous Electron Gas, Plenum Press, New York (1983).

    Google Scholar 

  22. Bachelet, G., Hamann, D. and Schlüter, M. Phys. Rev. B 26 (1982) 4199.

    Article  CAS  Google Scholar 

  23. Pearson, M., Smarigiassi, E. and Madden, P. A., J. Phys. Condens. Matter 5 (1993) 3221.

    Article  CAS  Google Scholar 

  24. Procacci, P., Marchi, M. and Martyna, G. J., J. Chem. Phys. 108 (1998) 8799.

    Article  CAS  Google Scholar 

  25. Tuckerman, M. E., Yarne, D. A., Samuelson, S. O., Hughes, A. L., and Martyna, G. J., Comp. Phys. Comm. 128 (2000) 333-376.

    Article  CAS  Google Scholar 

  26. Perdew, J. P. and Zunger, A., Phys. Rev. B 23 (1981) 5048.

    Article  CAS  Google Scholar 

  27. Tuckerman, M. E. and Martyna, G. J. and Berne, B. J., J. Chem. Phys. 97 (1992) 1990.

    Article  CAS  Google Scholar 

  28. Martyna, G. J., Tuckerman, M. E., Tobias, D. J. and Klein, M. L., Mol. Phys. 87 (1996) 1117.

    Article  CAS  Google Scholar 

  29. Troullier, N. and Martins, J. L., Phys. Rev. B 43 (1993) 43.

    Google Scholar 

  30. Becke, A. D., Phys. Rev. A 38 (1988) 3098.

    Article  PubMed  CAS  Google Scholar 

  31. Lee, C., Yang, W., and Parr, R. W., Phys. Rev. B 37 (1988) 785.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tuckerman, M.E., Minary, P., Pihakari, K., Martyna, G.J. (2002). A New Reciprocal Space Based Method for Treating Long Range Interactions in Ab Initio and Force-Field Based Calculations for Surfaces, Wires, and Clusters. In: Schlick, T., Gan, H.H. (eds) Computational Methods for Macromolecules: Challenges and Applications. Lecture Notes in Computational Science and Engineering, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56080-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56080-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43756-7

  • Online ISBN: 978-3-642-56080-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics