Skip to main content

Immunocytotherapy

  • Chapter
Arenaviruses II

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 263))

Abstract

Ever since the pioneering studies by Mogens Volkert and colleagues (Volkert et al. 1962–1967), lymphocytic choriomeningitis virus (LCMV), the prototypic member of the arenaviridae family, has become an important tool to evaluate the feasibility and efficacy of therapeutic immune cell grafting. Subsequent mechanistic and quantitative studies (Oldstone et al. 1986; Jamieson et al. 1987; Jamieson and Ahmed 1988; Tishon et al. 1995; Planz et al. 1997; Berger et al. 2000) have established the LCMV system as a primary immunocytotherapeutic model that continues to generate important insights for clinical applications in many human diseases. The remarkable flexibility of the LCMV system has also allowed for the exploration of different experimental strategies generating a complex of answers that appears appropriate to the multifaceted and intricate nature of diseases whose prevention or treatment may be improved by the adoptive transfer of immunologically active cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahmed R, King CC, Oldstone MB (1987a) Virus-lymphocyte interaction: T cells of the helper subset are infected with lymphocytic choriomeningitis virus during persistent infection in vivo. J Virol 61: 1571–1576

    PubMed  CAS  Google Scholar 

  • Ahmed R, Butler LD, Bhatti L (1988) T4+ T helper cell function in vivo: differential requirement for induction of antiviral cytotoxic T-cell and antibodyresponses. J Virol 62:2102–2106

    PubMed  CAS  Google Scholar 

  • Ahmed R, Jamieson BD, Porter DD (1987b) Immune therapy of a persistent and disseminated viral infection. J Virol 61:3920–3929

    PubMed  CAS  Google Scholar 

  • Ahmed R, Chen ISY (1999) Persistent viral infections. John Whiley & Sons Ltd., West Sussex, England

    Google Scholar 

  • Andreasen SO, Christensen JE, Marker O, Thomsen AR (2000) Role of CD40 ligand and CD28 in induction and maintenance of antiviral CD8+ effector T cell responses. J Immunol 164:3689–3697

    PubMed  CAS  Google Scholar 

  • Asano MS, Ahmed R (1996) CD8 T cell memory in B cell-deficient mice. J Exp Med 183:2165–2174

    Article  PubMed  CAS  Google Scholar 

  • Bachmann MF, Wong BR, Josien R, Steinman RM, Oxenius A, Choi Y (1999) TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation. J Exp Med 189:1025–1031

    Article  PubMed  CAS  Google Scholar 

  • Battegay M, Moskophidis D, Rahemtulla A, Hengartner H, Mak TW, Zinkernagel RM (1994) Enhanced establishment of a virus carrier state in adult CD4+ T-cell-deficient mice. J Virol 68:4700–4704

    PubMed  CAS  Google Scholar 

  • Battegay M, Bachmann MF, Burhkart C, Viville S, Benoist C, Mathis D, Hengartner H, Zinkernagel RM (1996) Antiviral immune responses of mice lacking MHC class II or its associated invariant chain. Cell Immunol 167:115–121

    Article  PubMed  CAS  Google Scholar 

  • Bartholdy C, Christensen JP, Wodarz D, Thomsen AR (2000) Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in gamma interferon-deficient mice infected with lymphocytic choriomeningitis virus. J Virol 74:10304–10311

    Article  PubMed  CAS  Google Scholar 

  • Baumgarth N, Jager GC, Herman OC, Herzenberg LA (2000) CD4+ T cells derived from B cell-deficient mice inhibit the establishment of peripheral B cell pools. Proc Natl Acad Sci USA 97:4766–4771

    Article  PubMed  CAS  Google Scholar 

  • Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR (1998) Help for cytotoxic T-cell responses is mediated by CD40 signalling. Nature 393:478–480

    Article  PubMed  CAS  Google Scholar 

  • Berger DP, Homann D, Oldstone MB (2000) Defining parameters for successful immunocytotherapy of persistent viral infection. Virology 266:257–263

    Article  PubMed  CAS  Google Scholar 

  • Borrow P, Evans CF, Oldstone MB (1995) Virus-induced immunosuppression: immune system-mediated destruction of virus-infected dendritic cells results in generalized immune suppression. J Virol 69: 1059–1070

    PubMed  CAS  Google Scholar 

  • Borrow P, Tishon A, Lee S, Xu J, Grewal IS, Oldstone MB, Flavell RA (1996) CD40L-deficient mice show deficits in antiviral immunity and have an impaired memory CD8+ CTL response. J Exp Med 183:2129–2142

    Article  PubMed  CAS  Google Scholar 

  • Borrow P, Oldstone MB (1997) Lymphocytic choriomeningitis virus. In: Nathanson, et al. (eds) Viral Pathogenesis. Lippincott-Raven Publishers, Philadelphia, pp 593–627

    Google Scholar 

  • Borrow P, Tough DF, Eto D, Tishon A, Grewal IS, Sprent J, Flavell RA, Oldstone MB (1998) CD40 ligand-mediated interactions are involved in the generation of memory CD8(+) cytotoxic T lymphocytes (CTL) but are not required for the maintenance of CTL memory following virus infection. J Virol 72:7440–7749

    PubMed  CAS  Google Scholar 

  • Brot MD, Rail GF, Oldstone MB, Koob GF, Gold LH (1997) Deficits in discriminated learning remain despite clearance of long-term persistent viral infection in mice. J Neurovirol 3:265–273

    Article  PubMed  CAS  Google Scholar 

  • Brundler MA, Aichele P, Bachmann M, Kitamura D, Rajewsky K, Zinkernagel RM (1996) Immunity to viruses in B cell-deficient mice: influence of antibodies on virus persistence and on T cell memory. Eur J Immunol 26:2257–2262

    Article  PubMed  CAS  Google Scholar 

  • Buchmeier MJ, Welsh RM, Dutko FJ, Oldstone MB (1980) The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv Immunol 30:275–331

    Article  PubMed  CAS  Google Scholar 

  • Byrne JA, Oldstone MB (1986) Biology of cloned cytotoxic T lymphocytes specific for lymphocytic choriomeningitis virus. VI. Migration and activity in vivo in acute and persistent infection. J Immunol 136:698 704

    PubMed  Google Scholar 

  • Cao W, Oldstone MB, De La Torre JC (1997) Viral persistent infection affects both transcriptional and posttranscriptional regulation of neuron-specific molecule GAP43.Virology 230: 147–154

    Article  PubMed  CAS  Google Scholar 

  • Cerny A, Huegin AW, Sutter S, Bazin H, Hengartner HH, Zinkernagel RM (1986) Immunity to lymphocytic choriomeningitis virus in B cell-depleted mice: evidence for B cell and antibody-independent protection by memory T cells. Eur J Immunol 16:913–917

    Article  PubMed  CAS  Google Scholar 

  • Cerny A, Sutter S, Bazin H, Hengartner H, Zinkernagel RM (1988) Clearance of lymphocytic choriomeningitisvirus in antibody-and B-cell-deprived mice. J Virol 62: 1803–1807

    PubMed  CAS  Google Scholar 

  • Christensen JP, Marker O, Thomsen AR (1994) The role of CD4+ T cells in cell-mediated immunity to LCMV: studies in MHC class I and class II deficient mice. Scand J Immunol 40:373–382

    Article  PubMed  CAS  Google Scholar 

  • Cihak J, Lehmann-Grube F (1978) Immunological tolerance to lymphocytic choriomeningitis virus in neonatally infected virus carrier mice: evidence supporting a clonal inactivation mechanism. Immunology 34:265–275

    PubMed  CAS  Google Scholar 

  • Ciurea A, Klenerman P, Hunziker L, Horvath E, Odermatt B, Ochsenbein AF, Hengartner H, Zinkernagel RM (1999) Persistence of lymphocytic choriomeningitis virus at very low levels in immune mice. Proc Natl Acad Sci USA 96:11964–11969

    Article  PubMed  CAS  Google Scholar 

  • Cole GA, Prendergast RA, Henney CS (1973) In vitro correlates of LCM virus-induced immune response. In: Lehmann-Grube F. (ed) Lymphocytic choriomeningitis virus and other arena viruses. Springer, Berlin Heidelberg New York, pp 61–71

    Chapter  Google Scholar 

  • Corriveau RA, Huh GS, Shatz CJ (1998) Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21:505–520

    Article  PubMed  CAS  Google Scholar 

  • de la Torre JC, Rail G, Oldstone C, Sanna PP, Borrow P, Oldstone MB (1993) Replication of lymphocytic choriomeningitis virus is restricted in terminally differentiated neurons. J Virol 67:7350–7359

    PubMed  Google Scholar 

  • de la Torre JC, Mallory M, Brot M, Gold L, Koob G, Oldstone MB, Masliah E (1996) Viral persistence in neurons alters synaptic plasticity and cognitive functions without destruction of brain cells. Virology 220:508–515

    Article  PubMed  Google Scholar 

  • Doherty PC, Christensen JP (2000) Accessing complexity: the dynamics of virus-specific T cell responses. Annu Rev Immunol 18:561–592

    Article  PubMed  CAS  Google Scholar 

  • Gold LH, Brot MD, Polis I, Schroeder R, Tishon A, de la Torre JC, Oldstone MB, Koob GF (1994) Behavioral effects of persistent lymphocytic choriomeningitis virus infection in mice. Behav Neural Biol 62: 100–109

    Article  PubMed  CAS  Google Scholar 

  • Gossmann J, Lohler J, Lehmann-Grube F (1991) Entry of antivirally active T lymphocytes into the thymus of virus-infected mice. J Immunol 146:293–297

    PubMed  CAS  Google Scholar 

  • Guidotti LG, Chisari FV (1999) Cytokine-induced viral purging-role in viral pathogenesis. Curr Opin Microbiol 2:388–391

    Article  PubMed  CAS  Google Scholar 

  • Guidotti LG, Borrow P, Brown A, McClary H, Koch R, Chisari FV (1999) Noncytopathic clearance of lymphocytic choriomeningitis virus from the hepatocyte. J Exp Med 189:1555–1564

    Article  PubMed  CAS  Google Scholar 

  • Homann D, Tishon A, Berger DP, Weigle WO, von Herrath MG, Oldstone MB (1998) Evidence for an underlying CD4 helper and CD8 T-cell defect in B-cell-deficient mice: failure to clear persistent virus infection after adoptive immunotherapy with virus-specific memory cells from µMT/µMT mice.J Virol 72:9208–9216

    PubMed  CAS  Google Scholar 

  • Hotchin JE, Sintis M (1958) Lymphocytic choriomeningits infection of mice as a model for the study of latent virus infection. Can J Microbiol 4:149–163

    Article  PubMed  CAS  Google Scholar 

  • Hotchin J (1973) Transient virus infection: spontaneous recovery mechanism of lymphocytic choriomeningitis virus-infected cells. Nat New Biol 241:270–272

    PubMed  CAS  Google Scholar 

  • Hotchin J (1974) The role of transient infection in arenavirus persistence. Prog Med Virol 18:81–93

    PubMed  CAS  Google Scholar 

  • Hotchin J, Seegal R (1977) Virus-induced behavioral alteration of mice. Science 196:671–674

    Article  PubMed  CAS  Google Scholar 

  • Hotchin J, Seegal R (1978) Alterations in behavior resulting from persistent lymphocytic choriomeningitis virus infection. Birth Defects Orig Artic Ser 14: 171–178

    PubMed  CAS  Google Scholar 

  • Huang S, Hendriks W, Althage A, Hemmi S, Bluethmann H, Kamijo R, Vilcek J, Zinkernagel RM, Aguet M (1993) Immune response in mice that lack the interferon-gamma receptor. Science 259:1742–1745

    Article  PubMed  CAS  Google Scholar 

  • Jamieson BD, Ahmed R (1988) T-cell tolerance: exposure to virus in utero does not cause a permanent deletion of specific T cells. Proc Natl Acad Sci USA 85:2265–2268

    Article  PubMed  CAS  Google Scholar 

  • Jamieson BD, Ahmed R (1989) T cell memory. Long-term persistence of virus-specific cytotoxic T cells. J Exp Med 169: 1993–2005

    Article  PubMed  CAS  Google Scholar 

  • Jamieson BD, Butler LD, Ahmed R (1987) Effective clearance of a persistent viral infection requires cooperation between virus-specific Lyt-2 + T cells and nonspecific bone marrow-derived cells. J Virol 61:3930–3937

    PubMed  CAS  Google Scholar 

  • Jamieson BD, Somasundaram T, Ahmed R (1991) Abrogation of tolerance to a chronic viral infection. J Immunol 147:3521–3529

    PubMed  CAS  Google Scholar 

  • Johnson ED, Cole GA (1975) Functional heterogeneity of lymphocytic choriomeningitis virus-specefic T lymphocytes. I. Identification of effector and memory subsets. J Exp Med 141:866–881

    PubMed  CAS  Google Scholar 

  • Johnson ED, Monjan AA, Morse HC 3rd (1978) Lack of B-cell participation in acute lymphocyte choriomeningitis disease of the central nervous system. Cell Immunol 36:143–150

    Article  PubMed  CAS  Google Scholar 

  • Joly E, Mucke L, Oldstone MB (1991) Viral persistence in neurons explained by lack of major histocompatibility class I expression. Science 253:1283–1285

    Article  PubMed  CAS  Google Scholar 

  • Kagi D, Ledermann B, Burki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369:31–37

    Article  PubMed  CAS  Google Scholar 

  • Kasaian MT, Leite-Morris KA, Biron CA (1991) The role of CD4+ cells in sustaining lymphocyte proliferation during lymphocytic choriomeningitis virus infection. J Immunol 146:1955–1963

    Google Scholar 

  • Klavinskis LS, Geckeler R, Oldstone MB (1989) Cytotoxic T lymphocyte control of acute lymphocytic choriomeningitis virus infection: interferon gamma, but not tumour necrosis factor alpha, displays antiviral activity in vivo. J Gen Virol 70:3317– 3325

    Article  PubMed  CAS  Google Scholar 

  • King CC, Jamieson BD, Reddy K, Bali N, Concepcion RJ, Ahmed R (1992) Viral infection of the thymus. J Virol 66:3155–3160

    PubMed  CAS  Google Scholar 

  • Kitamura D, Roes J, Kuhn R, Rajewsky K (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350:423–426

    Article  PubMed  CAS  Google Scholar 

  • Kopf M, Ruedl C, Schmitz N, Gallimore A, Lefrang K, Ecabert B, Odermatt B, Bachmann MF (1999) OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity 11:699–708

    Article  PubMed  CAS  Google Scholar 

  • Larsen JH, Volkert M (1967) Studies on immunological tolerance to LCM virus 7 Adoptive immunization of virus carrier mice by grafts of normal syngeneic lymphoid cells. Acta Path et Microbiol Scandinav 70:95–106

    Article  CAS  Google Scholar 

  • Lehmann-Grube F (1987) Mechanism of recovery from acute virus infection. In: Bauer H, Klenk HD, Scholtissek C (eds) Modern trends in virology. Springer, Berlin Heidelberg New York, pp 49–64

    Google Scholar 

  • Leist TP, Cobbold SP, Waldmann H, Aguet M, Zinkernagel RM (1987) Functional analysis of T lymphocyte subsets in antiviral host defense. J Immunol 138:2278–2281

    PubMed  CAS  Google Scholar 

  • Leist TP, Ruedi E, Zinkernagel RM (1988) Virus-triggered immune suppression in mice caused by virus-specific cytotoxic T cells. J Exp Med 167:1749–1754

    Article  PubMed  CAS  Google Scholar 

  • Leist TP, Zinkernagel RM (1990) Treatment with anti-tumor necrosis factor alpha does not influence the immune pathological response against lymphocytic choriomeningitis virus. Cytokine 2:29–34

    Article  PubMed  CAS  Google Scholar 

  • Linton PJ, Harbertson J, Bradley LM (2000) A critical role for B cells in the development of memory CD4 cells. J Immunol 165:5558–5565

    PubMed  CAS  Google Scholar 

  • Ludewig B, Ehl S, Karrer U, Odermatt B, Hengartner H, Zinkernagel RM (1998a) Dendritic cells efficiently induce protective antiviral immunity. J Virol 72:3812–3818

    CAS  Google Scholar 

  • Ludewig B, Odermatt B, Landmann S, Hengartner H, Zinkernagel RM (1998b) Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local tissue. J Exp Med 188:1493–1501

    Article  CAS  Google Scholar 

  • Ludewig B, Oehen S, Barchiesi F, Schwendener RA, Hengartner H, Zinkernagel RM (1999) Protective antiviral cytotoxic T cell memory is most efficiently maintained by restimulation via dendritic cells. J Immunol 163:1839–1844

    PubMed  CAS  Google Scholar 

  • Ludewig B, Ochsenbein AF, Odermatt B, Paulin D, Hengartner H, Zinkernagel RM (2000) Immuno-therapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J Exp Med 191:795–804

    Article  PubMed  CAS  Google Scholar 

  • Macaulay AE, De Kruyff RH, Umetsu DT (1998) Antigen-primed T cells from B cell-deficient JHD mice fail to provide B cell help. J Immunol 160:1694–1700

    PubMed  CAS  Google Scholar 

  • Matloubian M, Concepcion RJ, Ahmed R (1994) CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J Virol 68:8056–8063

    PubMed  CAS  Google Scholar 

  • McHeyzer-Williams MG, Ahmed R (1999) B cell memory and the long-lived plasma cell. Curr Opin Immunol 11: 172–179

    Article  PubMed  CAS  Google Scholar 

  • Medana IM, Gallimore A, Oxenius A., Martinic MMA, Wekerle H, Neumann H (2000) MHC class I-restricted killing of neurons by virus-specific CD8+ T lymphocytes is effected through the Fas/FasL, but not the perforin pathway. Eur J Immunol 30:3623–3633

    Article  PubMed  CAS  Google Scholar 

  • Moskophidis D, Cobbold SP, Waldmann H, Lehmann-Grube F (1987) Mechanism of recovery from acute virus infection: treatment of lymphocytic choriomeningitis virus-infected mice with monoclonal antibodies reveals that Lyt-2 + T lymphocytes mediate clearance of virus and regulate the antiviral antibody response. J Virol 61:1867–1874

    PubMed  CAS  Google Scholar 

  • Moskophidis D, Laine E, Zinkernagel RM (1993a) Peripheral clonal deletion of antiviral memory CD8+ T cells. Eur J Immunol 23:3306–3311

    Article  PubMed  CAS  Google Scholar 

  • Moskophidis D, Lechner F, Pircher H, Zinkernagel RM (1993b) Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362:758–761

    Article  CAS  Google Scholar 

  • Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M (1994) Functional role of type I and type II interferons in antiviral defense. Science 264:1918–1921

    Article  PubMed  CAS  Google Scholar 

  • Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD, Slansky J, Ahmed R (1998) Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8:177–187

    Article  PubMed  CAS  Google Scholar 

  • Nansen A, Jensen T, Christensen JP, Andreasen SO, Ropke C, Marker O, Thomsen AR (1999) Compromised virus control and augmented perforin-mediated immunopathology in IFN-gamma-deficient mice infected with lymphocytic choriomeningitis virus. J Immunol 163:6114–6122

    PubMed  CAS  Google Scholar 

  • Oldstone MB, Dixon FJ (1967) Lymphocytic choriomeningitis: production of antibody by “tolerant” infected mice. Science 158: 1193–1195

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MB, Blount P, Southern PJ, Lampert PW (1986) Cytoimmunotherapy for persistent virus infection reveals a unique clearance pattern from the central nervous system. Nature 321:239–243

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MB (1987) Immunotherapy for virus infection. Curr Top Microbiol Immunol 134:211–229

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MB (1998) Viral persistence: mechanisms and consequences. Curr Opin Microbiol 1:436–441

    Article  PubMed  CAS  Google Scholar 

  • Oxenius A, Campbell KA, Maliszewski CR, Kishimoto T, Kikutani H, Hengartner H, Zinkernagel RM, Bachmann MF (1996) CD40-CD40 ligand interactions are critical in T-B cooperation but not for other anti-viral CD4+ T cell functions. J Exp Med 183:2209–2218

    Article  PubMed  CAS  Google Scholar 

  • Oxenius A, Zinkernagel RM, Hengartner H (1998) Comparison of activation versus induction of unresponsiveness of virus-specific CD4+ and CD8+ T cells upon acute versus persistent viral infection. Immunity 9:449–457

    Article  PubMed  CAS  Google Scholar 

  • Pircher H, Burki K, Lang R, Hengartner H, Zinkernagel RM (1989) Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342:559–561

    Article  PubMed  CAS  Google Scholar 

  • Pircher H, Moskophidis D, Rohrer U, Burki K, Hengartner H, Zinkernagel RM (1990) Viral escape by selection of cytotoxic T cell-resistant virus variants in vivo. Nature 346:629–633

    Article  PubMed  CAS  Google Scholar 

  • Planz O, Ehl S, Furrer E, Horvath E, Brundler MA, Hengartner H, Zinkernagel RM (1997) A critical role for neutralizing-antibody-producing B cells, CD4(+) T cells, and interferons in persistent and acute infections of mice with lymphocytic choriomeningitis virus: implications for adoptive immunotherapy of virus carriers. Proc Natl Acad Sci USA 94:6874–6879

    Article  PubMed  CAS  Google Scholar 

  • Rawson P, Hermans IF, Huck SP, Roberts JM, Pircher H, Ronchese F (2000) Immunotherapy with dendritic cells and tumor major histocompatibility complex class I-derived peptides requires a high-density of antigen on tumor cells. Cancer Res 60:4493–4498

    PubMed  CAS  Google Scholar 

  • Rahemtulla A, Fung-Leung WP, Schilham MW, Kundig TM, Sambhara SR, Narendran A, Arabian A, Wakeham A, Paige CJ, Zinkernagel RM, et al (1991) Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4. Nature 353:180–184

    Article  PubMed  CAS  Google Scholar 

  • Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393:474–478

    Article  PubMed  CAS  Google Scholar 

  • Rooney CM, Smith CA, Ng CY, Loftin SK, Sixbey JW, Gan Y, Srivastava DK, Bowman LC, Krance RA, Brenner MK, Heslop HE (1998) Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92: 1549–1555

    PubMed  CAS  Google Scholar 

  • Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393:480–483

    Article  PubMed  CAS  Google Scholar 

  • Sevilla N, Kunz S, Holz A, Lewicki H, Homann D, Yamada H, Campbell KP, de La Torre JC, Oldstone MB (2000) Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells. J Exp Med 192: 1249–1260

    Article  PubMed  CAS  Google Scholar 

  • Slifka MK, Whitton JL (2000) Antigen-specific regulation of T cell-mediated cytokine production. Immunity 12:451–457

    Article  PubMed  CAS  Google Scholar 

  • Smelt CS, Borrow P, Kunz S, Cao W, Tishon A, Lewicki H, Campbell KP, Oldstone MBA (2001) Differences in affinity of binding of Lymphocytic Choriomeningitis virus strains to cellular receptor α-dystroglycan correlate with viral tropism and disease kinetics. J Virol 75:448–457

    Article  PubMed  CAS  Google Scholar 

  • Southern PJ, Blount P, Oldstone MB (1984) Analysis of persistent virus infections by in situ hybrid-ization to whole-mouse sections. Nature 312:555–558

    Article  PubMed  CAS  Google Scholar 

  • Tishon A, Southern PJ, Oldstone MB (1988) Virus-lymphocyte interactions. II. Expression of viral sequences during the course of persistent lymphocytic choriomeningitis virus infection and their localization to the L3T4 lymphocyte subset. J Immunol 140:1280–1284

    PubMed  CAS  Google Scholar 

  • Tishon A, Eddleston M, de la Torre JC, Oldstone MB (1993) Cytotoxic T lymphocytes cleanse viral gene products from individually infected neurons and lymphocytes in mice persistently infected with lymphocytic choriomeningitis virus. Virology 197:463–467

    Article  PubMed  CAS  Google Scholar 

  • Tishon A, Lewicki H, Rail G, Von Herrath M, Oldstone MB (1995) An essential role for type I interferon-gamma in terminating persistent viral infection. Virology 212:244–250

    Article  PubMed  CAS  Google Scholar 

  • Thomsen AR, Volkert M, Marker O (1979) The timing of the immune response in relation to virus growth determines the outcome of the LCM infection. Acta Pathol Microbiol Scand [C] 87C:47–54

    CAS  Google Scholar 

  • Thomsen AR, Johansen J, Marker O, Christensen JP (1996) Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell-deficient mice. J Immunol 157:3074–3080

    PubMed  CAS  Google Scholar 

  • Thomsen AR, Nansen A, Christensen JP, Andreasen SO, Marker O (1998) CD40 ligand is pivotal to efficient control of virus replication in mice infected with lymphocytic Choriomeningitis virus. J Immunol 161:4583–4590

    PubMed  CAS  Google Scholar 

  • Traub E (1936) Persistence of Lymphocytic choriomeningits virus in immune animals and its relation to immunity. J Exp Med 63:847–861

    Article  PubMed  CAS  Google Scholar 

  • van Essen D, Dullforce P, Gray D (2000) Role of B cells in maintaining helper T-cell memory. Phil Trans R Soc Lond B Biol Sci 355:351 355

    Google Scholar 

  • Volkert M (1962a) Studies on immunological tolerance to LCM virus. Treatment of virus carrier mice by adoptive immunization. Acta Path et Microbiol Scandinav 56:305–310

    Article  CAS  Google Scholar 

  • Volkert M (1962b) Studies on immunological tolerance to LCM virus 2. A preliminary report on adoptive immunization of virus carrier mice. Acta Path et Microbiol Scandinav 57:465–487

    Article  Google Scholar 

  • Volkert M, Larsen JH (1964) Studies on immunological tolerance to LCM virus 3. Duration and maximal effect of adoptive immunization of virus carrier mice. Acta Path et Microbiol Scandinav 60:577–587

    CAS  Google Scholar 

  • Volkert M, Larsen JH, Pfau CJ (1964) Studies on immunological tolerance to LCM virus 4. The question of immunity in adoptively immunized virus carriers. Acta Path et Microbiol Scandinav 61:268–282

    Google Scholar 

  • Volkert M, Larsen JH (1965a) Studies on immunological tolerance to LCM virus 5. The induction of tolerance to the virus. Acta Path et Microbiol Scandinav 63: 161–171

    CAS  Google Scholar 

  • Volkert M, Larsen JH (1965b) Studies on immunological tolerance to LCM virus 6. Immunity conferred on tolerant mice by immune serum and by grafts of homologous lymphoid cells. Acta Path et Microbiol Scandinav 63: 172–180

    CAS  Google Scholar 

  • Volkert M, Lundstedt C (1968) The provocation of latent lymphocytic choriomeningitis virus infections in mice by treatment with antilymphocytic serum. J Exp Med 127:327–339

    Article  PubMed  CAS  Google Scholar 

  • Volkert M, Marker O, Bro-Jorgensen K (1974) Two populations of T lymphocytes immune to the lymphocytic choriomeningitis virus. J Exp Med 139: 1329–1343

    Article  PubMed  CAS  Google Scholar 

  • Volkert M, Bro-Jorgensen K, Marker O, Rubin B, Trier L (1975) The activity of T and B lymphocytes in immunity and tolerance to the lymphocytic choriomeningitis virus in mice. Immunology 29:455–464

    PubMed  CAS  Google Scholar 

  • von Herrath MG, Yokoyama M, Dockter J, Oldstone MB, Whitton JL (1996) CD4-deficient mice have reduced levels of memory cytotoxic T lymphocytes after immunization and show diminished resistance to subsequent virus challenge. J Virol 70: 1072–1079

    Google Scholar 

  • von Herrath MG, Coon B, Oldstone MB (1997) Low-affinity cytotoxic T-lymphocytes require IFN-gamma to clear an acute viral infection. Virology 229:349 359

    Google Scholar 

  • von Herrath MG, Berger DP, Homann D, Tishon T, Sette A, Oldstone MB (2000) Vaccination to treat persistent viral infection. Virology 268:411–419

    Article  CAS  Google Scholar 

  • Walsh CM, Matloubian M, Liu CC, Ueda R, Kurahara CG Christensen JL, Huang MT Young JD, Ahmed R, Clark WR (1994) Immune function in mice lacking the perforin gene. Proc Natl Acad Sci USA 91:10854–10858

    Article  PubMed  CAS  Google Scholar 

  • Whitmire JK, Flavell RA, Grewal IS, Larsen CP, Pearson TC, Ahmed R (1999) CD40-CD40 ligand costimulation is required for generating antiviral CD4 T cell responses but is dispensable for CD8 T cell responses. J Immunol 163:3194–3201

    PubMed  CAS  Google Scholar 

  • Whitton JL, Oldstone MBA (2001) The immune response to viruses. In: Knipe D, Howley P, Griffin D, Lamb R, Martin M, Straus S (eds) Fields Virology (4th edn.) Lippincott Williams & Wilkins, Philadelphia, pp 285 320

    Google Scholar 

  • Wodarz D, Nowak MA (2000) CD8 memory, immunodominance, and antigenic escape. Eur J Immunol 30:2704–2712

    Article  PubMed  CAS  Google Scholar 

  • Zajac AJ, Blattman IN, Murali-Krishna K, Sourdive OJ, Surcsh M, Altman JD, Ahmed R (1998) Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 188:2205–2213

    Article  PubMed  CAS  Google Scholar 

  • Zinkernagel RM, Doherty PC (1974) Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248:701–702

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Homann, D. (2002). Immunocytotherapy. In: Oldstone, M.B.A. (eds) Arenaviruses II. Current Topics in Microbiology and Immunology, vol 263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56055-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56055-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62724-8

  • Online ISBN: 978-3-642-56055-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics