Skip to main content

Dendritic Cells and Tolerance

  • Chapter
New Trends in Allergy V
  • 123 Accesses

Abstract

Dendritic cells (DC) as potent antigen presenting cells play a pivotal role in the induction and elicitation of allergie immune responses. Due to their high antigen presenting capacity they may also be useful tools for the antigen/allergen-specific modification of immune responses on the T cell level. Recently developed culturing techniques of peripheral blood leukocytes make DC available in higher amounts and allow distinct manipulations of their function.

For the experiments presented below we obtained immature DC with high phagocytotic activity after cultivation of CD14+ monocytes with GM-CSF and IL-4 for uptake of allergens added to the cultures on day 7. For full maturation leading to high antigen presenting capacity DC were incubated with TNF-α, IL-iβ and PGE2 in the presence of varying modifiers described below for additional 2 days. Finally DC were cocultured with autologous T cells from atopic donors with relevant sensitizations to the allergens used in vitro (birch pollen, grass pollen and/or house dust mite) or control donors.

In naive and memory T cells allergen-loaded, but not control DC were able to induce antigen-specific proliferative responses and cytokine production. Production of Th2 cytokines was much higher in atopic donors than in non-atopic donors, especially concerning IL-4 production. Incubation of DC and T cells on collagen I strongly enhanced the IL-12 production of DC and consecutively the production of the Thi cytokine IFN-γ of T cells in an allergen-specific way, while the production of Th2 cytokines was inhibited. Incubation of DC with hydrocortisone during the last 2 days of their maturation period strongly decreased their ability to induce the production of Thi, but not of TI12 cytokines, partially due to a decreased IL-12 secretion of DC combined with the inhibition of the expression of HLA-DR and costimulatory molecules, especially CD86. This inhibition was even stronger when the DC were matured in the presence of IL-10 leading to an inhibition of induction of Thi as well as TI12 cytokine production in autologous T cells from sensitized atopic donors. These T cells could not be stimulated to produce Thi or TI12 cytokines even when they were restimulated with regularly matured allergen-loaded DC. Only the addition of compounds known to be able to break anergy of T cells, like IL-2,were able to restore the responsiveness of the allergen-specific T cells. Enhancement of apoptosis of T cells was not observed after stimulation with IL-io-treatedDC.

These data indicate that DC loaded with allergens depending on their culture conditions are able to deviate an already established allergie immune response from a TI12- to a Thi-dominated response and to induce anergy in allergen-specific Thi and TI12 cells in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wierenga EA, Snoek M, de Groot C, Chretien I, Bos JD, Jansen HM, Kapsenberg ML. Evidence for compartmentalization of functional subsets of CD2+ T lymphocytes in atopic patients. J Immunol 1990;144:4651–4656.

    PubMed  CAS  Google Scholar 

  2. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature 1996; 383:787–793.

    Article  PubMed  CAS  Google Scholar 

  3. O’Garra A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 1998;8:275–283.

    Article  PubMed  Google Scholar 

  4. Secrist H, Chelen CJ, Wen Y, Marshall JD, Umetsu DT. Allergen immunotherapy decreases interleukin 4 production in CD4+ T cells from allergie individuals. J Exp Med 1993;178:2123–2130.

    Article  PubMed  CAS  Google Scholar 

  5. Jutel M, Pichler WJ, Skrbic D, Urwyler A, Dahinden C, Müller UR. Bee venom immunotherapy results in decrease of IL-4 and IL-5 and increase of IFN-gamma secretion in specific allergenstimulated T cell cultures. J Immunol 1995;154:4187–4194.

    PubMed  CAS  Google Scholar 

  6. Bellinghausen I, Metz G, Enk AH, Christmann S, Knop J, Saloga J. Insect venom immunotherapy induces interleukin-10 production and a Tli2-to-Thi shift, and changes surface marker expression in venom-allergic subjects. Eur J Immunol 1997;27:1131–1139.

    Article  PubMed  CAS  Google Scholar 

  7. Durham SR, Till SJ. Immunologic changes associated with allergen immunotherapy. J Allergy Clin Immunol 1998;102:157–164.

    Article  PubMed  CAS  Google Scholar 

  8. Bellinghausen I, Knop J, Saloga J. Role of interleukin lo-producingT cells in specific (allergen) immunotherapy. Allergy Clin Immunol Int 2000;12:20–25.

    Article  Google Scholar 

  9. Akdis CA, Blesken T, Akdis M, Wüthrich B, Blaser K. Role of Interleukin 10 in specific immunotherapy. J Clin Invest 1998;102:98–106.

    Article  PubMed  CAS  Google Scholar 

  10. Inaba K, Metlay JP, Crowley MT, Steinman RM. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ [published erratum appears in J Exp Med 1990 Oct 1;172(4):1275]. J Exp Med 1990;172:631–640.

    Article  PubMed  CAS  Google Scholar 

  11. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991;9:271–296.

    Article  PubMed  CAS  Google Scholar 

  12. Tuting T, Wilson CC, Martin DM, Kasamon YL, Rowles J, Ma DI, Slingluif CL Jr., Wagner SN et al. Autologo us hum an monocyte-derived den driticœlls genetically modified to express melanoma antigens elicit primary cytotoxic Tcellresponses in vitro: enhancement by cotransfection of gen es encoding the Thi-biasing cytokines IL-12 and IFN-alpha. J Immunol 1998;160:1139–1147.

    PubMed  CAS  Google Scholar 

  13. Boczkowski D, Nair SK, Snyder D, Gilboa E. Dendritic Cells Pulsed with RNA are Potent Antigen-presenting Cells In Vitro and In Vivo. J Exp Med 1996;184:465–472.

    Article  PubMed  CAS  Google Scholar 

  14. Romani N, Reider D, Heuer M, Ebner S, Kampgen E, Eibl B, Niederwieser D, Schüler G. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods 1996;196:137–151.

    Article  PubMed  CAS  Google Scholar 

  15. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D. Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells. Nat Med 1998; 4:328–332.

    Article  PubMed  CAS  Google Scholar 

  16. Fong L, Brockstedt D, Benike C, Wu L, Engleman EG. Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol 2001;166:4254–4259.

    PubMed  CAS  Google Scholar 

  17. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K. Immunobiology of dendritic cells. Annu Rev Immunol 2000;18:767–811.

    Article  PubMed  CAS  Google Scholar 

  18. Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, de Waal Malefyt R, Liu YJ. Reciprocal control of T helper cell and dendritic cell differentiation. Science 1999;283:1183–1186.

    Article  PubMed  CAS  Google Scholar 

  19. Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D, Maraskovsky E, Maliszewski CR. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci U S A 1999;96:1036–1041.

    Article  PubMed  CAS  Google Scholar 

  20. Bellinghausen I, Brand U, Knop J, Saloga J. Comparison of allergen-stimulated dendritic cells from atopic and nonatopic donors dissecting their effect on autologous naive and memory T helper cells of such donors. J Allergy Clin Immunol 2000;105:988–996.

    Article  PubMed  CAS  Google Scholar 

  21. Kalinski P, Hilkens CM, Snijders A, Snijdewint FG, Kapsenberg ML. IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J Immunol 1997;159:28–35.

    PubMed  CAS  Google Scholar 

  22. Lambrecht BN, Salomon B, Klatzmann D, Pauwels RA. Dendritic cells are required for the development of chronic eosinophilic airway inflammation in response to inhaled antigen in sensitized mice. J Immunol 1998;160:4090–4097.

    PubMed  CAS  Google Scholar 

  23. Stumbles PA, Thomas JA, Pimm CL, Lee PT, Venaille TJ, Proksch S, et al. Resting respiratory tract dendritic cells preferentially stimulate T helper cell type 2 (TI12) responses and require obligatory cytokine signals for induction of Thi immunity. J Exp Med 1998;188:2019–2031.

    Article  PubMed  CAS  Google Scholar 

  24. Roth R, Spiegelberg HL. Activation of cloned human CD4+ Thi and TI12 cells by blood dendritic cells. Scand J Immunol 1996;43:646–651.

    Article  PubMed  CAS  Google Scholar 

  25. Sung SJ, Taketomi EA, Smith AM, Platts Mills TA, Fu SM. Efficient presentation of house dust mite allergen Der p 2 by monocyte-derived dendritic cells and the role of beta 2 integrins. Scand J Immunol 1999;49:96–105.

    Article  PubMed  CAS  Google Scholar 

  26. Lambrecht BN. The dendritic cell in allergie airway diseases: a new player to the game. Clin Exp Allergy 2001;31:206–218.

    Article  PubMed  CAS  Google Scholar 

  27. Marsh DG, Neely JD, Breazeale DR, Ghosh B, Freidhoff LR, Ehrlich Kautzky E, Schou C, Krishnaswamy G et al. Linkage analysis of IL4 and other chromosome 5q31.1 markers and total serum immunoglobulin E concentrations. Science 1994;264:1152–1156.

    Article  PubMed  CAS  Google Scholar 

  28. Anderson GG, Cookson WO. Recent advances in the genetics of allergy and asthma. Mol Med Today 1999;5:264–273.

    Article  PubMed  CAS  Google Scholar 

  29. Brand U, Bellinghausen I, Enk AH, Jonuleit H, Becker D, Knop J, Saloga J. Influence of extracellular matrix proteins on the development of cultured human dendritic cells. Eur J Immunol 1998;28:1673–1680.

    Article  PubMed  CAS  Google Scholar 

  30. Brand U, Bellinghausen I, Enk AH, Jonuleit H, Becker D, Knop J, Saloga J. Allergen-specific immune deviation from a TH2 to a THi response induced by dendritic cells and collagen type I. J Allergy Clin Immunol 1999;104:1052–1059.

    Article  PubMed  CAS  Google Scholar 

  31. Tschoetschel U, Schwing J, Frosch S, Schmitt E, Schuppan D, Reske Kunz AB. Modulation of proliferation and lymphokine secretion of murine CD4+ T cells and cloned Thi cells by proteins of the extracellular matrix. Int Immunol 1997;9:147–159.

    Article  PubMed  CAS  Google Scholar 

  32. Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH. Induction of tolerance by IL-10-treated dendritic cells. J Immunol 1997;159:4772–4780.

    PubMed  CAS  Google Scholar 

  33. Steinbrink K, Jonuleit H, Müller G, Schüler G, Knop J, Enk AH. Interieukin-io-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 1999;93:1634–1642.

    PubMed  CAS  Google Scholar 

  34. Caux C, Massacrier C, Vanbervliet B, Barthélémy C, Liu YJ, Banchereau J. Interleukin 10 inhibits T cell alloreaction induced by human dendritic cells. Int Immunol 1994;6:1177–1185.

    Article  PubMed  CAS  Google Scholar 

  35. Vieira PL, Kalinski P, Wierenga EA, Kapsenberg ML, de Jong EC. Glucocorticoids inhibit bioactive IL-12p70 production by in vitro-generated human dendritic cells without affecting their T cell stimulatory potential. J Immunol 1998;161:5245–5251.

    PubMed  CAS  Google Scholar 

  36. Piemonti L, Monti P, Allavena P, Sironi M, Soldini L, Leone BE, Socci C, Di Carlo V. Glucocorticoids affect human dendritic cell differentiation and maturation. J Immunol 1999;162:6473–6481.

    PubMed  CAS  Google Scholar 

  37. de Jong EC, Vieira PL, Kalinski P, Kapsenberg ML. Corticosteroids inhibit the production of inflammatory mediators in immature monocyte-derived DC and induce the development of tolerogenic DC3. J Leukoc Biol 1999;66:201–204.

    PubMed  Google Scholar 

  38. Bellinghausen I, Brand U, Steinbrink K, Enk AH, Knop J, Saloga J. Inhibition of human allergic T cell responses byinterleukin-io-treated dendritic cells: differences to hydrocortisone-treated dendritic cells. J Allergy Clin Immunol 2001;108:242–249.

    Article  PubMed  CAS  Google Scholar 

  39. Groux H, O’Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, Roncarolo MG. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997; 389:737–742.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saloga, J., Bellinghausen, I., Brand, U., Steinbrink, K., Enk, A.H., Knop, J. (2002). Dendritic Cells and Tolerance. In: Ring, J., Behrendt, H. (eds) New Trends in Allergy V. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55994-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55994-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62768-2

  • Online ISBN: 978-3-642-55994-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics