Skip to main content

Fast Methods for Shape Extraction in Medical and Biomedical Imaging

  • Chapter
Geometric Methods in Bio-Medical Image Processing

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 403 Accesses

Abstract

We present a fast shape recovery technique in 2D and 3D with specific applications in modeling shapes from medical and biomedical imagery. This approach and the algorithms described is similar in spirit to our previous work in [16,18], is topologically adaptable, and runs in O(N log N) time where N is the total number of points visited in the domain. Our technique is based on the level set shape recovery scheme introduced in [16,3] and the fast marching method in [27] for computing solutions to static Hamilton-Jacobi equations.

Supported in part by the Applied Mathematical Sciences Subprogram of the Office of Energy Research, U.S. Dept. of Energy under Contract DE-AC03- 76SD00098 and by the NSF ARPA under grant DMS-8919074.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Adalsteinsson and J. A. Sethian, “A fast level set method for propagating interfaces,” J. Comp. Phys., Vol. 118(2), pp. 269–277, May 1995.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Adalsteinsson, R. Kimmel, R. Malladi, and J. A. Sethian, “ Fast marching methods for computing solutions to static Hamilton-Jacobi equations,” submitted for publication, SIAM Journal of Numerical Analysis, January 1996.

    Google Scholar 

  3. V. Caselles, F. Catté, T. Coll, and F. Dibos, “A geometric model for active contours in image processing,” Numerische Mathematik, Vol. 66(1), pp. 1–32, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic snakes,” Proc. of ICCV, MIT, Cambridge MA, June 1995.

    Google Scholar 

  5. V. Caselles, R. Kimmel, G. Sapiro, and C. Sbert, “Three-dimensional object modeling via minimal surfaces,” Proc. ECCV, pp. 97–106, Cambridge, UK, April 1996.

    Google Scholar 

  6. D. L. Chopp, “Computing minimal surfaces via level set curvature flow,” Journal of Computational Physics, Vol. 106, pp. 77–91, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky, “Fast active object tracking in color video,” in Proc. the 21 IEEE convention of the Electrical and Electronic Engineers in Israel, Tel Aviv, April 2000.

    Google Scholar 

  8. Helmsen, J., Puckett, E.G., Colella, P., and Dorr, M., Two new methods for simulating photolithography development, SPIE 1996 International Symposium on Microlithography, SPIE, v. 2726, June, 1996.

    Google Scholar 

  9. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” International Journal of Computer Vision, Vol. 1, pp. 321–331, 1988.

    Article  Google Scholar 

  10. S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi, “Gradient flows and geometric active contour models,” Proc. of ICCV, MIT, Cambridge MA, June 1995.

    Google Scholar 

  11. R. Malladi and J. A. Sethian, “An O(N log N) algorithm for shape modeling,” Proc. Natl. Acad. Sci., USA, Vol. 93, pp. 9389–9392, September 1996.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Malladi and J. A. Sethian, “Level set methods for curvature flow, image enhancement, and shape recovery in medical images,” Proc. of International Conference on Mathematics and Visualization, H. C. Hege, K. Polthier (eds), pp. 255–267, Springer-Verlag, Berlin, Summer 1996.

    Google Scholar 

  13. R. Malladi and J. A. Sethian, “Image processing via level set curvature flow,” Proc. Natl. Acad. Sci., USA, Vol. 92, pp. 7046–7050, July 1995.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Malladi and J. A. Sethian, “Image processing: Flows under Min/Max curvature and mean curvature,” Graphics Models and Image Processing, Vol. 58(2), pp. 127–141, March 1996.

    Article  MathSciNet  Google Scholar 

  15. R. Malladi and J. A. Sethian, “A unified approach to noise removal, image enhancement, and shape recovery,” IEEE Transactions on Image Processing, Vol. 5, No. 11, November 1996.

    Google Scholar 

  16. R. Malladi, J. A. Sethian, and B. C. Vemuri, “A topology-independent shape modeling scheme,” in Proc. of SPIE Conference on Geometric Methods in Computer Vision II, Vol. 2031, San Diego, California, pp. 246–258, July 1993.

    Google Scholar 

  17. R. Malladi, J. A. Sethian, and B. C. Vemuri, “Evolutionary fronts for topologyindependent shape modeling and recovery,” in Proceedings of Third European Conference on Computer Vision, LNCS Vol. 800, pp. 3–13, Stockholm, Sweden, May 1994.

    Google Scholar 

  18. R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front propagation: A level set approach,” in IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 17, No. 2, pp. 158–175, Feb. 1995.

    Article  Google Scholar 

  19. R. Malladi, R. Kimmel, D. Adelsteinsson, G. Sapiro, V. Caselles, and J. A. Sethian, “A geometric approach to segmentation and analysis of 3D medical images,” Proc. of IEEE/SIAM workshop on Mathematical Methods in Biomedical Image Analysis, pp. 244–252, San Francisco, CA, June 1996; submitted to CVIU.

    Google Scholar 

  20. R. B. Milne, “An adaptive level set method,” Ph. D. Thesis, Report LBNL-39216, Lawrence Berkeley National Laboratory, University of California, December 1995.

    Google Scholar 

  21. T. McInerney and D. Terzopoulos, “Topologically adaptable snakes,” Proc. ICCV, Cambridge, MA, June 1995.

    Google Scholar 

  22. S. Osher and J. A. Sethian, “Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulation,” Journal of Computational Physics, Vol. 79, pp. 12–49, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  23. N. K. Paragios and R. Deriche, “A PDE-based level approach for detections and tracking of moving objects,” in Proceedings of ICCV’98, pp. 1139–1145, Bombay, India, Jan. 1998.

    Google Scholar 

  24. N. K. Paragios and R. Deriche, “Coupled geodesic active regions for image segmentations: A level set approach,” in Proc. ECCV, Dublin, Ireland, June 2000.

    Google Scholar 

  25. R. Sedgewick, Algorithms, Addison-Wesley Publ., 1988.

    Google Scholar 

  26. J. A. Sethian, “Curvature and the evolution of fronts,” Commun. in Mathematical Physics, Vol. 101, pp. 487–499, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. A. Sethian, “A marching level set method for monotonically advancing fronts,” Proc. Natl. Acad. Sci., USA, Vol. 93(4), 1996.

    Google Scholar 

  28. J. A. Sethian, “A review of the theory, algorithms, and applications of level set methods for propagating interfaces,” Acta Numerica, pp. 309–395, 1996.

    Google Scholar 

  29. Sethian, J.A., Fast Marching Level Set Methods for Three-Dimensional Photolithography Development, Proceedings, SPIE 1996 International Symposium on Microlithography, Santa Clara, California, June, 1996.

    Google Scholar 

  30. J. A. Sethian, Level set methods: Evolving interfaces in geometry, fluid dynamics, computer vision, and material sciences, Cambridge University Press, 1996.

    Google Scholar 

  31. J. Shah, “Recovery of shapes by evolution of zero-crossings,” Tech. Report, Math. Dept, Northwestern University, Boston, MA, 1995.

    Google Scholar 

  32. N. Sochen, R. Kimmel, and R. Malladi, “From high energy physics to low level vision,” Report LBNL-39243, Lawrence Berkeley Natl. Laboratory, Berkeley, August 1996; submitted to IEEE Trans. Image Processing, special issue on PDE and Geometry-Driven Diffusion in Image Processing and Analysis.

    Google Scholar 

  33. D. Terzopoulos, A. Witkin, and M. Kass, “Constraints on deformable models: Recovering 3D shape and nonrigid motions,” Artificial Intelligence, Vol. 36, pp. 91–123, 1988.

    Article  MATH  Google Scholar 

  34. Tsitsiklis, J.N., Efficient Algorithms for Globally Optimal Trajectories, IEEE Transactions on Automatic Control, Volume 40, pp. 1528–1538, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  35. R. T. Whitaker, “Algorithms for implicit deformable models,” Proc. ICCV, pp. 822–827, Cambridge, MA, June 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Malladi, R., Sethian, J.A. (2002). Fast Methods for Shape Extraction in Medical and Biomedical Imaging. In: Malladi, R. (eds) Geometric Methods in Bio-Medical Image Processing. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55987-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55987-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62784-2

  • Online ISBN: 978-3-642-55987-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics