Skip to main content

Mikroskopische Anatomie

  • Chapter
Klinische Hepatologie
  • 118 Accesses

Zusammenfassung

Die Leber ist das größte solide Organ und die größte exokrine Drüse des Menschen. Sie nimmt eine zentrale Stellung im Stoffwechsel endogener Substanzen sowie im Abbau und in der Elimination exogen zugeführter Stoffe ein. Das Organ besteht aus Parenchym- und Mesenchymzellen, dem Gallengangsystem, Blut- und Lymphgefäßen, Nerven und der bindegewebigen extrazellulären Matrix. Tabelle 3.1.1 zeigt die zahlenmäßige Verteilung unterschiedlicher Zelltypen in der menschlichen Leber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Akiyoshi H, Gonda T, Terada T (1998) A comparative histochemical and immunohistochemical study of aminergic, cholinergic and peptidergic innervation in rat, hamster, guinea pig, dog and human livers. Liver 18: 352–359

    PubMed  CAS  Google Scholar 

  • Arias IM, Jakoby WB, Boyer JL, Fausto N, Schachter D, Shafritz DA (eds) (1994) The liver. Biology and pathobiology. Raven Press, New York

    Google Scholar 

  • Bioulac-Sage P, Lafon ME, Saric J et al. (1990) Nerves and perisinusoidal cells in human liver. J Hepatol 10: 105–112

    Article  PubMed  CAS  Google Scholar 

  • Bloch EH (1970) The termination of hepatic arterioles and functional unit of the liver as determined by microscopy of the living organ. Ann NY Acad Sci 170: 78–87

    Article  Google Scholar 

  • Brissaud E, Sabourin C (1888) Sur la constitution lobulaire du foie et les voies de la circulation sanguine intra-hepatique. C R Soc Biol Annee 8: 757–776

    Google Scholar 

  • Ding WG, Fujimura M, Mori A et al. (1991) Light and electron microscopy of neuropeptide Y-containing nerves in human liver, gallbladder and pancreas. Gastroenterology 101: 1054–1058

    PubMed  CAS  Google Scholar 

  • Ekataksin W (2000) The isolated artery: an intrahepatic arterial pathway that can bypass the lobular parenchyma in mammalian livers. Hepatology 31: 269–279

    Article  PubMed  CAS  Google Scholar 

  • Ekataksin W, Wake K (1997) New concepts in biliary and vascular anatomy of the liver. Progr Liver Dis 15: 1–30

    Google Scholar 

  • Ekataksin W, Kaneda K (1999) Liver microvascular architecture: an insight into the pathophysiology of portal hypertension. Semin Liver Dis 19: 359–382

    Article  PubMed  CAS  Google Scholar 

  • Elias H (1949) A re-examination of the structure of the mammalian liver 11: the hepatic lobule and its relation to the vascular and biliary systems. Am J Anat 85: 379–456

    Article  PubMed  CAS  Google Scholar 

  • Forssmann WG, Ito S (1977) Hepatocyte innervation in primates. J Cell Biol 74: 299–313

    Article  PubMed  CAS  Google Scholar 

  • Gardemann A, Puschell GP, Jungermann K (1992) Nervous control of liver metabolism and hemodynamics. Eur J Biochem 207: 399–411

    Article  PubMed  CAS  Google Scholar 

  • Gerber MA, Thung SN (1978) Carcinoembryonic antigen in normal and diseased liver tissue. Am J Pathol 92: 671–680

    PubMed  CAS  Google Scholar 

  • Jungermann K, Gardemann A, Beuers U et al. (1987) Regulation of liver metabolism by the hepatic nerves. Adv Enzyme Regul 26: 63–88

    Article  PubMed  CAS  Google Scholar 

  • Kiernan F (1833) The anatomyand physiologyof the liver. Philos Trans R Soc London 123: 711–770

    Article  Google Scholar 

  • Lautt WW (1980) Hepatic nerves: a review of their functions and effects. Can J Physiol Pharmacol 56: 679–682

    Article  Google Scholar 

  • Ludwig J, Ritman EL, LaRusso NF et al. (1998) Anatomy of the human biliary system studied by quantitative computer-aided three dimensional imaging techniques. Hepatology 27: 893–899

    Article  PubMed  CAS  Google Scholar 

  • Mac Sween RNM, Scothorne RJ (1994) Developmental anatomy and normal structure. In: MacSween RNM, Anthony PP, Scheuer PJ, Burt AD, Portmann BC (eds) Pathology of the liver. Churchill Livingstone, Edinburgh, pp 1–49

    Google Scholar 

  • Mall FP (1906) A study of the structural unit of the liver. Am J Anat 5: 227–308

    Article  Google Scholar 

  • Matsumoto T, Komori R, Magara T et al. (1979) A study of the normal structure of the human liver, with special reference to its angioarchitecture. Jikeikai Med J 26: 1–40

    CAS  Google Scholar 

  • Rappaport AM, Borowy ZJ, Longheed WM et al. (1954) Subdivision ofhexagonalliver lobules into a structural and functional unit; role in hepatic physiology and pathology. Anat Res 119: 11

    Article  CAS  Google Scholar 

  • Saxena R, Theise ND, Crawford JM (1999) Microanatomy of the human liver — exploring the hidden interfaces. Hepatology 30: 1339–1346

    Article  PubMed  CAS  Google Scholar 

  • Seseke FG, Gardemann A, Jungermann K (1992) Signal propagation via gap junctions, a key step in the regulation of liver metabolism by the sympathetic hepatic nerves. FEBS Letters 301:265–270

    Article  Google Scholar 

  • Tarada T, Nakanuma Y, Ohta G (1987) Glandular elements around the intrahepatic bile ducts in man: their morphology and distribution in normal livers. Liver 7: 1–8

    Google Scholar 

  • Tiniakos DG, Lee JA, Burt AD (1996) Innervation of the liver: morphology and function. Liver 16: 151–160

    PubMed  CAS  Google Scholar 

  • Trutmann M, Sasse D (1994) The lymphatics of the liver. Anat Embryol 190:201–209

    Article  PubMed  CAS  Google Scholar 

  • Beck K, Hunter I, Engel J (1990) Structure and function oflaminin: anatomy of a multidomain glycoprotein. FASEB J 4: 148–160

    PubMed  CAS  Google Scholar 

  • Burgeson RE (1988) New collagens, new concepts. Annu Rev Cell Biol 4: 551–577

    Article  PubMed  CAS  Google Scholar 

  • Hynes RO (1987) Integrins: a family of cell surface receptors. Cell 48: 549–554

    Article  PubMed  CAS  Google Scholar 

  • Laurent GJ (1987) Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am J Physiol 252: C1–C9

    PubMed  CAS  Google Scholar 

  • Musso O, Rehn M, Saarela J et al. (1998) Collagen XVIII is localized in sinusoids and basement membrane zones and expressed by hepatocytes and activated stellate cells in fibrotic human liver. Hepatology 28: 98–107

    Article  PubMed  CAS  Google Scholar 

  • Petrides PE (1998) Binde-und Stützgewebe. In: Löffler G, Petrides PE (Hrsg) Biochemie und Pathobiochemie, 6. Aufl. Springer, Berlin Heidelberg New York, S 733–759

    Google Scholar 

  • Prockop DJ, Kivirikko KI, Tuderman L et al. (1979) The biosynthesis of collagen and its disorders. N Engl J Med 301: 13–23

    Article  PubMed  CAS  Google Scholar 

  • Rojkind M, Giambrone MA, Biempica L (1979) Collagen types in normal and cirrhotic liver. Gastroenterology 76: 710–719

    PubMed  CAS  Google Scholar 

  • Ruoslahti E (1988) Structure and biology of proteoglycans. Annu Rev Cell Biol 4: 229–255

    Article  PubMed  CAS  Google Scholar 

  • Schuppan D (1990) Structure of the extracellular matrix in normal and fibrotic liver: collagens and glycoproteins. Semin Liver Dis 10: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Schuppan D, Gressner AM (1999) Function and metabolism of collagens and other extracellular matrix proteins. In: Bircher J, Benhamou J-P, McIntyre N, Rizzetto M, Rodés J (eds) Oxford textbook of clinical hepatology, 2nd ed. Oxford University Press, pp 381–407

    Google Scholar 

Hepatozyten

  • Bainton DF (1981) The discovery of lysosomes. J Cell Biol 91: 66s–76s

    Article  PubMed  CAS  Google Scholar 

  • Feldmann G (1989) The cytoskeleton of the hepatocyte. Structure and functions. J Hepatol 8: 380–386

    Article  PubMed  CAS  Google Scholar 

  • Feldmann G (1992) Liver ploidy. J Hepatol 16: 7–10

    Article  PubMed  CAS  Google Scholar 

  • Lazarides E (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283: 249–256

    Article  PubMed  CAS  Google Scholar 

  • Loud AV (1968) A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J Cell Biol 37: 27–46

    Article  PubMed  CAS  Google Scholar 

  • Meier PY (1988) Transport polarity of hepatocytes. Semin Liver Dis 8: 293–307

    Article  PubMed  CAS  Google Scholar 

  • Moll R, Franke WW, Schiller DL et al. (1982) The catalogue of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31: 11–24

    Article  PubMed  CAS  Google Scholar 

  • Moll R, Schiller DL, Franke WW (1990) Identification of protein IT of the intestinal cytoskeleton as a novel type I cytokeratin with unusual properties and expression patterns. J Cell Biol 111: 567–580

    Article  PubMed  CAS  Google Scholar 

  • Radu A, Blobel G, Moore SM (1995) Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleoproteins. Proc Natl Acad Sci USA 92: 1769–1773

    Article  PubMed  CAS  Google Scholar 

  • Rouiller C, Bernard W (1956) “Microbodies” and the problem of mitochondrial regeneration in liver cells. J Biophys Biochem Cytol [suppl 2]: 355–358

    Article  PubMed  Google Scholar 

  • Schroer TA, Sheetz MP (1991) Functions of microtubule-based motors. Ann Rev Physiol 53: 629–652

    Article  CAS  Google Scholar 

  • Stemlieb J, Quintara N (1977) The peroxisomes of human hepatocytes. Lab Invest 36: 140–149

    Google Scholar 

  • Van Eyken P, Desmet VJ (1993) Cytokeratins and the liver. Liver 13: 113–122

    PubMed  Google Scholar 

  • Wang E, Fischmann D, Liem PKH et al. (1985) Intermediate filaments. Ann NY Acad Sci 455: 32–56

    Article  PubMed  CAS  Google Scholar 

Sinusendothelzellen

  • Balabaud C, Boulard A, Quinton A et al. (1988) Light and transmission electron microscopy of sinusoids in human liver. In: Bioulac-Sage P, Balabaud C (eds) Sinusoids in human liver: health and disease. Kupffer Cell Foundation, pp 87–110

    Google Scholar 

  • Burt AD, Le Bail B, Balabaud C et al. (1993) Morphologie investigation of sinusoidal cells. Semin Liver Dis 13: 21–38

    Article  PubMed  CAS  Google Scholar 

  • Smedsrod B, Pertoft H, Gustafson S et al. (1990) Scavenger functions of the liver endothelial cell. Biochem J 266: 313–327

    PubMed  CAS  Google Scholar 

  • Smedsbrod B, DeBleeser PJ, Braet F et al. (1994) Cell biology of liver endothelial and Kupffer cells. Gut 35: 1509–1516

    Article  Google Scholar 

  • Wake K (1995) Structure of the sinusoidal wall in the liver. In: Wisse E, Knook DL, Wake K (eds) Cells of the hepatic sinusoid. Kupffer Cell Foundation, pp 241–246

    Google Scholar 

  • Wisse E, De Zanger RB, Charles K et al. (1985) The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 5: 683–692

    Article  PubMed  CAS  Google Scholar 

Kupffer-Zellen

  • Bode JG, Peters-Regehr T, Schliess F et al. (1998) Activation of mitogen-activated kinases and IL-6 release in response to lipopolysaccharides in Kupffer cells is modulated by anisoosmolarity. J Hepatol 28: 795–802

    Article  PubMed  CAS  Google Scholar 

  • Decker K (1990) Biologically active products of stimulated liver macrophages (Kupffer cells). Eur J Biochem 192: 245–261

    Article  PubMed  CAS  Google Scholar 

  • Wake K, Decker K, Kim A et al. (1989) Cell biology and kinetics of Kupffer cells in the liver. Int Rev Cytol 118: 173–229

    Article  PubMed  CAS  Google Scholar 

Ito-Zellen

  • Bataller R, Nicolas JP, Ginès P et al. (1997) Arginine vasopressin induces contraction and stimulates growth of cultured human hepatic stellate cells. Gastroenterology 113: 615–624

    Article  PubMed  CAS  Google Scholar 

  • Bioulac-Sage P, Lafon ME, Saric J et al. (1990) Nerves and perisinusoidal cells in human liver. J Hepatol 10: 105–112

    Article  PubMed  CAS  Google Scholar 

  • Friedman SL (1996). Hepatic stellate cells. In: Boyer JL, Ockner RK (eds) Progress in liver diseases, vol XIV, Saunders, Philadelphia, pp 101–130

    Google Scholar 

  • Gabriel A, Kuddus RH, Rao AS et al. (1999) Down-regulation of endothelin receptors by transforming growth factor ß1 in hepatic stellate cells. J Hepatol 30: 440–450

    Article  PubMed  CAS  Google Scholar 

  • Hautekeete ML, Geerts A (1997) The hepatic stellate (Ito) cell: its role in human liver disease. Virchows Arch 430: 195–207

    Article  PubMed  CAS  Google Scholar 

  • Ito T (1951) Cytological studies on stellate cells of Kupffer and fat storing cells in the capillary wall of human liver. Acta Anat Nippon 26: 2

    Google Scholar 

  • Knittel T, Kobold D, Saile B et al. (1999) Rat liver myofibroblasts and hepatic stellate cells: different cell populations of the fibroblast lineage with fibrogenic potential. Gastroenterology 117: 1205–1221

    Article  PubMed  CAS  Google Scholar 

  • Mallat A, Lotersztajn S (1996) Multiple hepatic functions of endothelin-1: physiopathological relevance. J Hepatol 25: 405–413

    Article  PubMed  CAS  Google Scholar 

  • Pinzani M (1995) Hepatic stellate (ITO) cells: expanding roles for a liver-specific pericyte. J Hepatol 22: 700–706

    Article  PubMed  CAS  Google Scholar 

  • Pinzani M, Milani S, De Franco R et al. (1996) Endothelin-1 is overexpressed in cirrhotic liver and exerts multiple effects on activated human hepatic stellate cells. Gastroenterology 110: 534–548

    Article  PubMed  CAS  Google Scholar 

  • Pinzani M, Marra F, Carloni V (1998) Signal transduction in hepatic stellate cells. Liver 18: 2–13

    PubMed  CAS  Google Scholar 

  • Ramadori G (1991) The stellate cell (Ito-cell, fat-storing cell, lipocyte, perisinusoidal cell) of the liver. N ew insights into pathophysiology of an intriguing cell. Virchows Arch B Cell Pathol 61: 147–158

    CAS  Google Scholar 

  • Sakaida I, Nagatomi A, Hironaka K et al. (1999) Quantitative analysis of liver fibrosis and stellate cell changes in patients with chronic hepatitis C after interferon therapy. Am J Gastroenterol 94: 489–496

    Article  PubMed  CAS  Google Scholar 

  • Schmitt-Gräff A, Krüger S, Borchard F et al. (1991) Modulation of alpha smooth muscle actin and desmin expression in perisinusoidal cells of normal and diseased human livers. Am J Pathol 138: 1233–1242

    PubMed  Google Scholar 

  • Wake K (1971) “stemzellen” in the liver: perisinusoidal cells with special reference to storage of vitamin A. Am J Anat 132:429–462

    Article  Google Scholar 

Pit-Zellen

  • Bouwens L, Wisse E (1992) Pit cells in the liver. Liver 12: 3–9

    PubMed  CAS  Google Scholar 

  • Winnock M, Barcina MG, Lukomska B et al. (1993) Liver-associated lymphocytes: role in tumor defense. Semin Liver Dis 13: 81–92

    Article  PubMed  CAS  Google Scholar 

  • Wisse E, van’t Noordende IM, van der Meulen I et al. (1976) The pit cell: description of a new type of cell occurring in rat liver sinusoids and peripheral blood. Cell Tiss Res 173: 423–435

    Article  CAS  Google Scholar 

Biliäre Epithelzellen

  • Alpini G, Phillips JO, LaRusso NF (1994) The biology of biliary epithelia. In: Arias IM (ed) The liver. Biology and pathobiology, 3rd ed. Raven Press, New York, pp 623–653

    Google Scholar 

  • Desmet VJ (1985) Intrahepatic bile ducts under the lens. J Hepatol 1: 545–559

    Article  PubMed  CAS  Google Scholar 

  • Sirica AE (1992) Biology of biliary epithelial cells. In: Boyer IL, Ockner RK (eds) Progress in liver diseases, vol X. Saunders, Philadelphia, pp 63–87

    Google Scholar 

  • Tavoloni N (1987) The intrahepatic biliary epithelium: an area of growing interest in hepatology. Semin Liver Dis 7: 280–292

    Article  PubMed  CAS  Google Scholar 

  • Arthur MJP (1994) Matrix degradation in the liver. In: Surrenti C, Casini A, Milani S, Pinzani M (eds) Fat-storing cells and liver fibrosis. Kluwer Academic Publishers, Dordrecht, pp 110–127

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dancygier, H. (2003). Mikroskopische Anatomie. In: Klinische Hepatologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55902-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55902-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67559-4

  • Online ISBN: 978-3-642-55902-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics