Skip to main content

Ocean-Atmosphere Exchange and Earth-System Biogeochemistry

  • Chapter
Marine Science Frontiers for Europe

Abstract

Atmosphere-ocean chemical exchanges exert a significant control on both the gas-phase and particulate composition of the atmosphere. As a consequence, there are close linkages of these exchanges with atmospheric radiative transfer, climate and atmospheric chemistry. Such exchanges are important to human society both because they are fundamental to predictions of future climate forcing and because of an immediate need for science-based assessment of the effectiveness of proposed emission controls and other mitigation strategies. In this article we present a subjective overview of the current state of knowledge related to the exchange of climate-relevant materials including long-lived gases (CO2, N2O), short lived gases including volatile sulphur and halogen-containing compounds, and sea salt. Because of the importance of quantification of air-sea exchanges for short-term control of the concentration of these species in ocean and atmosphere, we also review recent progress and present opportunities related to studies of air-sea gas transfer. Finally we present a range of open questions, promising approaches and major challenges related to the measurement, modelling and understanding of air-sea chemical exchanges. Many of these issues will be addressed within the new global change research program SOLAS (Surface Ocean Lower Atmosphere Study).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson TR, Spall SA, Yool A, Cipollini P, Challenor PG and Fasham MJR (2001) Global fields of sea surface dimethylsulfide predicted from chlorophyll, nutrients and light. J Mar Syst 30:1–20

    Article  Google Scholar 

  • Andreae MO and Crutzen PJ (1997) Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science 276(5315):1052–1056

    Article  Google Scholar 

  • Andreas EL (1998) A new sea spray generation function for wind speeds up to 32 ms-1. J Phys Oceanogr 28:2175–2184

    Article  Google Scholar 

  • Asher WE, Farley PJ, Higgins BJ, Karle LM, Monahan EC and Leifer IS (1996) The influence of bubble plumes on air/seawater gas transfer velocities. J Geophys Res 101:12027–12041

    Article  Google Scholar 

  • Atlas E, Pollock W, Greenberg J, Heidt L (1993) Alkyl nitrates, nonmethane hydrocarbons, and halocar-bon gases over the equatorial Pacific Ocean during Saga 3. J Geophys Res 98:933–947

    Article  Google Scholar 

  • Bange HW, Rapsomanikis S, and Andreae MO (1996) Nitrous oxide in coastal waters. Glob Biogeochem Cycl 10:197–207

    Article  Google Scholar 

  • Barrie LA and Platt U (1997) Arctic tropospheric chemistry: Overview to Tellus special issue. 49B:450–454

    Google Scholar 

  • Barrie LA, Bottenheim RC, Crutzen PJ, and Rasmussen RA (1988) Ozone destruction and the chemical reactions at polar sunrise in the lower Arctic atmosphere. Nature 334:138–141

    Article  Google Scholar 

  • Bates NR (2001) Interannual variability of oceanic CO2 and biogeochemical properties in the Western North Atlantic subtropical gyre. Deep-Sea Res II 48:1507–1528

    Article  Google Scholar 

  • Bates NR, Michaels AF and Knap AH (1996) Seasonal and interannual variability of oceanic carbon dioxide species at the US JGOFS Bermuda Atlantic Time-series Study (BATS) site. Deep-Sea Res 43:347–383

    Article  Google Scholar 

  • Battle M, Bender M, Tans PP, White JWC, Ellis JT, Conway T and Francey RJ (2000) Global carbon sinks and their variability, inferred from atmospheric O2 and δ13C. Science 287:2467–2470

    Article  Google Scholar 

  • Bousquet P, Peylin P, Ciais P, LeQuere C, Friedlingstein P and Tans PP (2000) Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290:1342–1346

    Article  Google Scholar 

  • Bouwman AF, Van der Hoek KW and Olivier JGJ (1995) Uncertainties in the global source distribution of nitrous oxide. J Geophys Res 100:2785–2800

    Article  Google Scholar 

  • Buitenhuis ET, de Baar HJW and Veldhuis MJW (1999) Photosynthesis and calcification of Emiliania huxleyi (Prymnesiophyceae) as a function of inorganic carbon species. J Phycol 35:949–959

    Article  Google Scholar 

  • Butler JH and Rodriguez JM (1996) Methyl bromide in the atmosphere. In: Bell CH, Price N and Chakrabarti B (eds) J Wiley and Sons, New York pp 2–90

    Google Scholar 

  • Carpenter LJ and Liss PS (2000) On temperate sources of bromoform and other reactive organic bromine gases. J Geophys Res 105:539–547

    Article  Google Scholar 

  • Carpenter LJ, Sturges WT, Penkett SA, Liss PS, Alicke B, Hebestreit K and Platt U (1999) Short-lived alkyl iodides and bromides at Mace Head, Ireland: Links to biogenic sources and halogen oxide production. J Geophys Res 104:679–689

    Article  Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO and Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo, and climate. Nature 326:655–661

    Article  Google Scholar 

  • Class T and Ballschmiter K (1988) Chemistry of organic traces in air, VIII, Sources and distribution of bromoand bromochloromethanes in marine air and surface water of the Atlantic Ocean. J Atmos Chem 6:35–46

    Article  Google Scholar 

  • Codispoti LA, Elkins JW, Yoshinari T, Friederich GE, Sakamoto CM and Packard TT (1992) On the nitrous oxide flux from productive regions that contain low oxygen waters. In: Desai BN (ed) Oceanography of the Indian Ocean. Oxford Publishing, New Dehli pp 271–284

    Google Scholar 

  • Cox P, Betts R, Jones C, Spall S and Totterdell I (2000) Acceleration of global warming due to carbon cycle feedbacks in a coupled climate-carbon model. Nature 408:184–187

    Article  Google Scholar 

  • Cunnold DM et al. (1997) GAGE/AGAGE measurements indicating reductions in global emissions of CC13F and CCl2F2in 1992-1994. J Geophys Res 102:1259–1269

    Article  Google Scholar 

  • De Baar HJW, Boyd PM (2000) The Role of Iron in Plankton Ecology and Carbon Dioxide Transfer of the Global Oceans. In: Hanson RB, Ducklow HW and Field JG (eds) The Dynamic Ocean Carbon Cycle: A Midterm Synthesis of the Joint Global Ocean Flux Study. International Geosphere Biosphere Programme Book Series, Vol. 5, Cambridge University Press (ISBN 0 521 65603 6) pp 61–140

    Google Scholar 

  • DeBaar HJW, LaRoche J (2003) Trace metals in the Ocean: Evolution, biology and global change. In: Wefer G, Lamy F, Mantoura F (eds) Marine Science Frontiers for Europe. Springer, Berlin pp 79–104

    Chapter  Google Scholar 

  • Dore JE and Karl DM (1996) Nitrification in the euphotic zone as a source for nitrite, nitrate, and nitrous oxide at station ALOHA. Limnol Oceanogr 41:1619–1628

    Article  Google Scholar 

  • Dore JE, Popp BN, Karl DM and Sansone FJ (1998) A large source of atmospheric nitrous oxide from subtropical North Pacific surface waters. Nature 396:63–66

    Article  Google Scholar 

  • Dvortsov VL, Geller MA, Solomon S, Schauffler SM, Atlas EL and Blake DR (1999) Rethinking reactive halogen budgets in the midlatitude lower stratosphere. Geophys Res Lett 26:1699–1702

    Article  Google Scholar 

  • Ehhalt D, Prather M, Dentener F, Derwent R, Dlugokencky E, Holland E, Isaksen I, Katima J, Kirchhoff V, Matson P, Midgley P and Wang M (2001) Atmospheric Chemistry and Greenhouse Gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate Change 2001: The Scientific Basis. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York USA pp 881

    Google Scholar 

  • Erickson III DJ (1993) A stability-dependent theory for air-sea gas exchange. J Geophys Res 98:8471–8488

    Article  Google Scholar 

  • Fairall CW, Hare JE, Edson JB and McGillis W (2000) Parameterization and micrometeorological measurement of air-sea gas transfer. Boundary-Layer Meteorol 96:63–105

    Article  Google Scholar 

  • Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T and Tans P (1998) A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282:442–446

    Article  Google Scholar 

  • Feely RA, Wanninkhof R, Takahashi T and Tans P (1999) Influence of El Niño on the equatorial Pacific contribution to atmospheric CO2 accumulation. Nature 398:597–601

    Article  Google Scholar 

  • Flückiger J, Dällenbach A, Blunier T, Stauffer B, Stocker TF, Raynaud D and Barnola J-M (1999) Variations in atmospheric N2O concentration during abrupt climatic changes. Science 285:227–230

    Article  Google Scholar 

  • Frew NM (1997) The role of organic films in air-sea gas exchange. In: Liss PS, Duce RA (eds) The Sea Surface and Global Change. Cambridge University Press, Cambridge pp 121–163

    Chapter  Google Scholar 

  • Frew NM, Glover DM, Bock EJ, Goyet C, McCue SJ and Healy RJ (1999) Estimation of Global Air-Sea Transfer of CO2 Using TOPEX/Poseidon Dual-Frequency Backscatter. IUGG abstracts, Birmingham UK

    Google Scholar 

  • Groszko W (1999) An estimate of the global air sea flux of methyl chloride, methyl bromide, and methyl iodide. PhD Thesis, Dalhousie University, Halifax, Canada

    Google Scholar 

  • Groszko W and Moore RM (1998) Ocean atmosphere exchange of methyl bromide: NW Atlantic and Pacific Ocean studies. J Geophys Res 103:16737–16741

    Article  Google Scholar 

  • Happell JD and Wallace DWR (1996) Methyl iodide in the Greenland/Norwegian Seas and the tropical Atlantic Ocean: Evidence for photochemical production. Geophys Res Lett 23:2105–2108

    Article  Google Scholar 

  • Holfort J, Johnson KM, Schneider B, Siedler G and Wallace DWR (1998) The meridional transport of dissolved inorganic carbon in the South Atlantic Ocean. Glob Biogeochem Cycl 12:479–499

    Article  Google Scholar 

  • Indermuehle A, Stocker TF, Joss F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R and Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398:121–126

    Article  Google Scholar 

  • Jessup AT, Zappa CJ, Loewen MR and Hesany V (1997) Infrared remote sensing of breaking waves. Nature 385:52–55

    Article  Google Scholar 

  • Karl DM (1999) A sea of change: Biogeochemical variability in the North Pacific Subtropical Gyre. Ecosystems 2:181–214

    Article  Google Scholar 

  • Kettle AJ and Andreae MO (2000) Flux of dimethyl-sulfide from the oceans: A comparison of updated data sets and flux models. J Geophys Res 105:793–808

    Article  Google Scholar 

  • Kettle AJ, Andreae MO, Amouroux D, Andreae TW, Bates TS, Berresheim H, Bingemer H, Boniforti R, Curran MAJ, DiTullio GR, Helas G, Jones GB, Keller MD (1999) A global database of sea surface dimethyl-sulfide (DMS) measurements and a simple model to predict sea surface DMS as a function of latitude, longitude and month. Glob Biogeochem Cycl 13(2):399–444

    Article  Google Scholar 

  • Khalil MAK, Rasmussen RA (1992) The global sources of nitrous oxide. J Geophys Res 97(D13): 14651–14660

    Article  Google Scholar 

  • Khalil MAK and Rasmussen RA (1999) Atmospheric chloroform. Atmos Environ 33:1151–1158

    Article  Google Scholar 

  • Kiene RP and Linn LJ (2000) Distribution and turnover of dissolved DMSP and its relationship with bacterial production and dimethlsulphide in the Gulf of Mexico. Limnol Oceanogr 45:849–861

    Article  Google Scholar 

  • Kim K-R and Craig H (1990) Two isotope characterization of N2O in the Pacific Ocean and constraints on its origin in deep water. Nature 347:58–61

    Article  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C and Opdyke BN (1999) Geochemical consequences of increased atmospheric CO2 on coral reefs. Science 284:118–120

    Article  Google Scholar 

  • Kurylo MJ, Rodriguez JM, Andreae MO, Atlas EL, Blake DR, Butler JH, Lal S, Lary DJ, Midgely PM, Montzka SA, Novelli PC, Reeves CE, Simmonds PG, Steele JP, Sturges WT, Weiss RF and Yokouchi Y (1999) Short-lived ozone-related compounds. In: Ennis CA (ed) Scientific Assessment of Ozone Depletion: 1998. Global Ozone Research and Monitoring Project, Report 44, pp 2.1–2.56 World Meteorol. Org, Geneva, Switzerland

    Google Scholar 

  • Lalli CM (1991). Enclosed Experimental Marine Ecosystems; A review and recommendations; a contribution of SCOR Working Group. Springer Verlag, New York 218p

    Google Scholar 

  • Lalli CM and Parsons TR (1993) Biological Oceanography, an Introduction. Oxford: Pergamon Press

    Google Scholar 

  • Lee K, Wanninkhof R, Takahashi T, Doney SC and Feely R (1998) Low interannual variability in recent oceanic uptake of atmospheric carbon dioxide. Nature 396:155–159

    Article  Google Scholar 

  • Le Quéré C, Orr JC, Monfray P, Aumont O and Madec G (2000) Interannual variability of the oceanic sink of CO2 from 1979 through 1997. Glob Biogeochem Cycl 14:1247–1265

    Article  Google Scholar 

  • Liss PS and Slater PG (1974) Flux of gases across the air-sea interface. Nature 247:181–238

    Article  Google Scholar 

  • Liss PS and Merlivat L (1986) Air-sea gas exchange rates: Introduction and synthesis. In: Buat-Menard P (ed) The Role of Air-Sea Exchange in Geochemical Cycling. Reidel, Boston pp 113–129

    Chapter  Google Scholar 

  • Lobert J, Butler JH, Montzka SA, Geller LS, Myers RC and Elkins JW (1995) A net sink for atmospheric CH3Br in the East Pacific Ocean. Science 267:1002–1005

    Article  Google Scholar 

  • Manley SL and Dastoor MN (1988) Methyl iodide production by kelp and associated microbes. Mar Biol 98:477–482

    Article  Google Scholar 

  • Mason BJ (2001) The role of sea-salt particles as cloud condensation nuclei over the remote oceans. QJR Meteorol Soc 127:2023–2032

    Article  Google Scholar 

  • McGillis WR, Edson JB, Ware JD, Dacey JWH, Hare JE, Fairall CW and Wanninkhof R (2001) Carbon dioxide flux techniques performed during GasEx 98. Mar Chem 75:267–280

    Article  Google Scholar 

  • Moore RM and Zafiriou OC (1994) Photochemical production of methyl iodide in seawater. J Geophys Res 99:415–420

    Google Scholar 

  • Moortgat GK, Meller R and Schneider W (1993) Temperature dependence (256K-296K) of the absorption cross-sections of bromoform in the wave-length range 285-360nm. In: Niki H and Becker RH (eds) The Tropospheric Chemistry of Ozone in the Polar Regions. Springer-Verlag, New York pp 359–370

    Chapter  Google Scholar 

  • Murphy DM, Anderson JR, Quinn PK, Mcinnes LM, Brechtel FJ, Kreidenweis SM, Middlebrook AM, Pósfai M, Thomson DS and Buseck PR (1998) Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer. Nature 392:62–65

    Article  Google Scholar 

  • Naqvi SWA, Jayakumar DA, Narvekar PV, Naik H, Sarma WSS, D’Souza W, Joseph S and George MD (2000) Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 408:346–349

    Article  Google Scholar 

  • Nevison CD, Weiss RF and Erickson III DE (1995) Global oceanic emissions of nitrous oxide. J Geophys Res 100:15809–15820

    Article  Google Scholar 

  • Nightingale PD, Malin G, Law CS, Watson AJ, Liss PS, Liddicoat MI, Boutin J and Upstill-Goddard RC (2000) In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Glob Biogeochem Cycl 14:373–387

    Article  Google Scholar 

  • O’Dowd CD, Jimenez JL, BahreiniR, FlaganRC, Scinfeld JH, Hameri K, Pirjola L, Kulmala M, Jennings SG and Hoffinann T (2002) Marineaerosolformationfrom biogenic iodine emissions. Nature 417(6889):632–636

    Article  Google Scholar 

  • Penkett SA, Jones BMR, Rycroft MJ and Symmons DA (1985) An interhemispheric comparison of the concentrations of bromine compounds in the atmosphere. Nature 318:550–553

    Article  Google Scholar 

  • Perez T, Trumbore SE, Tyler SC, Davidson EA, Kellar M and DeCamargo PB (2000) Isotopic variability of N2O emissions from tropical forest soils. Glob Biogeo-chem Cycl 14(2):525–535

    Article  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NL, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E and Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735):429–436

    Article  Google Scholar 

  • Platt U and Moortgat GK (1999) Heterogeneous and homogeneous chemistry of reactive halogen compounds in the lower troposphere. J Atmos Chem 34:1–8

    Article  Google Scholar 

  • Prather M, Derwent R, Ehhalt D, Fraser P, Sanhueza E and Zhou X (1996) Other trace gases and atmospheric chemistry, in IPCC Second Assessment of Climate Change. Cambridge University Press, New York section 2.2

    Google Scholar 

  • Prentice I, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, LeQuere C, Scholes RJ and Wallace DWR (2001) The Carbon Cycle and Atmospheric CO2. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K and Johnson CA (eds) Climate Change 2001: The Scientific Basis. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York USA pp 881

    Google Scholar 

  • Quack B (1994) Volatile halogenated hydrocarbons in the marine atmosphere: Inventory, sources and mass balances over North Sea and Baltic. Ph D thesis, IfM, Univ Kiel, Germany

    Google Scholar 

  • Quack B and Suess E (1999) Volatile halogenated hydrocarbons over the western Pacific between 43°N and 4°N. J Geophys Res 104:663–678

    Article  Google Scholar 

  • Quack B and Wallace DWR (in press) Rates and controls of the air-sea flux of bromoform (CHBr3): A review and synthesis. Glob Biogeochem Cycl

    Google Scholar 

  • Quinn PK, Charlson RJ and Zoller WH (1987) Ammonia, the dominant base in the remote marine troposphere: A review. Tellus 39B:413–425

    Article  Google Scholar 

  • Rahn T and Wahlen M (2000) A reassessment of the global isotopic budget of atmospheric nitrous oxide. Glob Biogeochem Cycl 14:537–543

    Article  Google Scholar 

  • Rhew RC, Miller BR and Weiss RF (2000) Natural methyl bromide and methyl chloride emissions from coastal salt marshes. Nature 403:292–295

    Article  Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Torteil PD, Zeebe RE and Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    Article  Google Scholar 

  • Roeckmann T, Kaiser J, Crowley JN, Brenninkmeijer CAM and Crutzen PJ (2001) The origin of the anomalous or “mass-independent” oxygen isotope frac-tionation in tropospheric N2O. Geophys Res Lett 28:503–506

    Article  Google Scholar 

  • Sander R and Crutzen PJ (1996) Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea. J Geophys Res 101D:9121–9138

    Article  Google Scholar 

  • Schauffler SM, Atlas EL, Blake DR, Flocke F, Lueb RA, Lee-Taylor JM, Stroud V and Travnicek W (1999) Distributions of brominated organic compounds in the troposphere and lower stratosphere. J Geophys Res 104:513–535

    Article  Google Scholar 

  • Scitzinger SP and Kroeze C (1998) Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Glob Biogeochem Cycl 12:93–113

    Article  Google Scholar 

  • Simó R and Pedros-Alló C (1999) Role of vertical mixing in controlling the oceanic production of dimethyl sulphide. Nature 402:396–399

    Article  Google Scholar 

  • Singh H, Chen Y, Staudt A, Jacob D, Blake D, Heikes B and Snow J (2001) Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds. Nature 410:1078–1081

    Article  Google Scholar 

  • Skjelvan I, Johannessen T and Miller LA (1999) Inter-annual variability of fCO2 in the Greenland and Norwegian Seas. Tellus 51B:477–489

    Google Scholar 

  • Sturges WT, Oram DE, Carpenter LJ and Penkett SA (2000) Bromoform as a source of stratospheric bromine. Geophys Res Lett 27:2081–2084

    Article  Google Scholar 

  • Tans PP, Fung IY and Takahashi T (1990) Observational constraints on the global atmospheric CO2 budget. Science 247:1431–1438

    Article  Google Scholar 

  • Tokarczyk R and Moore RM (1994) Production of volatile organohalogens by phytoplankton cultures. Geophys Res Lett 21:285–288

    Article  Google Scholar 

  • Vogt R, Crutzen PJ, Sander R (1996) A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer. Nature 382:327–330

    Article  Google Scholar 

  • Von Glasow R and Crutzen PJ (in press) Tropospheric halogen chemistry. In: Keeling R (ed) Treatise on Geochemistry, Volume 4: The Atmosphere. Elsevier Science

    Google Scholar 

  • Von Hobe M, Najjar R, Kettle AJ and Andreae MO (submitted) Photochemical and physical modeling of carbonyl sulfide in the ocean. J Geophys Res

    Google Scholar 

  • Wanninkhof R (1992) Relationship between gas exchange and wind speed over the ocean. J Geophys Res 97:7373–7381

    Article  Google Scholar 

  • Warneck P (1999) Chemistry of the Natural Atmosphere (2nd ed). Academic Press 923p

    Google Scholar 

  • Wayne RP (1991) Chemistry of Atmospheres (2nd ed) Oxford Science Publications, Oxford, UK 447 p

    Google Scholar 

  • Wennberg PO (1999) Bromine explosion. Nature 397:299–301

    Article  Google Scholar 

  • Winn CD, Li YH, Mackenzie FT and Karl DM (1998) Rising surface ocean dissolved inorganic carbon at the Hawaii Ocean Time-series Site. Mar Chem 60:33–47

    Article  Google Scholar 

  • WMO Scientific Assessment of Ozone Depletion (1998) Global Ozone Research and Monitoring Project, Report 44, CA Ennis (ed) 2.1-2.56 World Meteorol. Org, Geneva, Switzerland

    Google Scholar 

  • Yokouchi Y, Mukai H, Yamamoto H, Otsuki A, Saitoh C and Nojiri Y (1997) Distribution of methyl iodide, ethyl iodide, bromoform, and dibromomethane over the ocean (east and southeast Asian seas and the western Pacific). J Geophys Res 102:805–809

    Article  Google Scholar 

  • Yokouchi Y, Noijiri Y, Barrie LA, Toom-Sauntry D, Machida T, Inuzuka Y, Akimoto H, Li HJ, Fujinuma Y, Aoki S (2000) A strong source of methyl chloride to the atmosphere from tropical coastal land. Nature 403(6767):295–298

    Article  Google Scholar 

  • Yoshida N and Toyoda S (2000) Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers. Nature 405(6784):330–334

    Article  Google Scholar 

  • Zappa CJ, Asher WE, Jessup AT, Klinke J and Long SR (2002) Effect of microscale wave breaking on airwater gas transfer. In: Donelan M, Drennen W, Saltzman E and Wanninkhof R (eds) Gas Transfer at Water Surfaces. Geophys Monogr 127, American Geophysical Union, ashington DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wallace, D.W.R., Wanninkhof, R. (2003). Ocean-Atmosphere Exchange and Earth-System Biogeochemistry. In: Wefer, G., Lamy, F., Mantoura, F. (eds) Marine Science Frontiers for Europe. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55862-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55862-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40168-1

  • Online ISBN: 978-3-642-55862-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics