Skip to main content

Uranium speciation in plants

  • Conference paper
Uranium in the Aquatic Environment

Abstract

Several spectroscopic methods specially the time-resolved laser-induced fluorescence spectroscopy and the X-ray-absorption spectroscopy were used for the determination of the uranium speciation in plants. Differences between the uranium speciation in the initial solution and inside the plants could be detected. The chemical speciation of uranium is identical in the roots, shoot axis and leaf. It is independent from the uranium speciation in the initial solution and the type of the plant. The results indicate that the uranium is predominantly bound as uranium phosphate (phosphoryl) groups in the plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akudinov A L, Ravel B, Rehr J J, Conradson S D (1998) Real-space multiple scattering calculation and interpretation of x-ray absorption near-edge structure. Phys. Rev. B 58: 7565 - 7576

    Article  Google Scholar 

  • Bernhard G, Geipel G, Reich T, Brendler V, Amayri S, Nitsche H (2001) Uranyl(VI) carbonate complex formation: Validation of the Ca2U02(C03)3(aq.) species. Radiochim. Acta 89: 511-518

    Article  Google Scholar 

  • Brendler V, Geipel G, Bernhard, G, Nitsche H (1996) Complexation in the System UO22+/PO43-/OH-(aq.) Investigations Over Wide Ranges in pH and Concentration. Radiochim. Acta 74/75:

    Google Scholar 

  • Bucher J J, Allen P G, Edelstein N M, Shuh D K, Madden N W, Cork C, Luke P, Pehl D, Malone D (1996) A multichannel monolithic Ge detector system for fluorescence x-ray absorption spectroscopy. Rev. Sci. Instrm. 67: 1

    Article  Google Scholar 

  • Denecke M A et al. (1997) Differentiating Between Monodentate and Bidentate Carboxylate Ligands Coodinated to Uranyl Ions using EXAFS. J. Phys. IV France 7: C2

    Article  Google Scholar 

  • Frindik 0.(1986) Uranium contents in Soils Plant and Foods. Landwirtschaftliche Forschung Vol 39 1-2:75-86

    Google Scholar 

  • Geipel G, Brachmann A, Brendler V, Bernhard G, Nitsche H (1996) Uranium (VI) Sulfate Complexation Studies by Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS). Radiochim. Acta 75: 199-204

    Google Scholar 

  • Geipel G, Bernhard G, Rutsch M, Brendler V, Nitsche H (2000) Spectroscopic properties of Uranium (VI) Minerals studied by time-resolved laser-induced Fluorescence Spectroscopy (TRLFS). Radiochimica Acta 88: 757

    Article  Google Scholar 

  • George G N, Pickering I J (1995) EXAFSPAK: A Suite of Computer Programs for Analysis of X-Ray Absorption Spectra, Stanford Synchrotron Radiation Laboratory

    Google Scholar 

  • Grenthe I, Fuger J, Lemire R J, Muller AB, Nguyen-Trung C, Wanner H (1992) Chemical Thermodynamics of Uranium, 1st ed., Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Hennig C et al. (2001) EXAFS investigation of uranium, (VI) complexes formed at Bacillus cereus and Bacillus sphaericus surfaces. Radiochim. Acta 89: 625

    Article  Google Scholar 

  • Makarov E S, Ivanov V I (1960) The crystal structure of meta-autunite Ca(U02)2(P04)2·6H20. Phys. Rev. B 54: 156

    Google Scholar 

  • Panak P J, Raff J, Selenska-Pobell S, Geipel G, Bernhard G, Nitsche H (2000) Complex formation of U(VI) with Bacillus-isolates from a uranium mining waste pile. Radiochim. Acta 88: 71-76

    Article  Google Scholar 

  • Reich T, Bernhard G, Geipel G, Funke H, Rossberg A, Matz W, Schell N, Nitsche H (2000) The Rossendorf Beam Line ROBL- a dedicated experimental station for XAFS measurements of actinides and other radionuclides. Radiochim. Acta 88: 633-637

    Article  Google Scholar 

  • Schmidt, P F et al. (1994) Praxis der Rasterelektronenmikroskopie und Mikrobereichsanalyse, Kontakt↦ Studium Band 444, Expert Verlag

    Google Scholar 

  • Wolery T J (1992) EQ3/6 a software package for the geochemical modeling of aqueous systems, Report UCRL-MA-110662 part1, Lawrence Livermore National Laboratory, California, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Günther, A., Bernhard, G., Geipel, G., Rossberg, A., Reich, T. (2002). Uranium speciation in plants. In: Merkel, B.J., Planer-Friedrich, B., Wolkersdorfer, C. (eds) Uranium in the Aquatic Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55668-5_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55668-5_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62877-1

  • Online ISBN: 978-3-642-55668-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics