Skip to main content

How Proteins Speak with One Another In Cell Signaling

  • Chapter
Molecular Nuclear Medicine
  • 260 Accesses

Abstract

This chapter will focus on cell signaling and signal transduction, that is, the extremely complex series of reactions by which cells receive and react to external signals (for reviews, see Hunter 2000; Pawson and Nash 2000). Particularly, it will deal with those processes that are regulated by protein phosphorylation. The topic is of significance considering that approximately 15 to 20% of the entire human genome (at least 6400 genes) is devoted to the expression of the molecules implicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bargmann CI, Hung M-C, Weinberg RA (1986) Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 45:649–657

    Article  PubMed  CAS  Google Scholar 

  • Barinaga M (1995) Receptors find work as guides. Science 269:1668–1670

    Article  PubMed  CAS  Google Scholar 

  • Bliska JB, Guan K-L, Dixon JE et al (1991) Tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc Natl Acad Sci USA 88:1187–1191

    Article  PubMed  CAS  Google Scholar 

  • Blume-Jensen P, Jiang G, Hyman R et al (2000) Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3′-kinase is essential for male fertility. Nat Genet 24:157–162

    Article  PubMed  CAS  Google Scholar 

  • Brady-Kalnay SM, Rimm DL, Tonks NK (1994) The receptor protein tyrosine phosphatase PTPμ associates with cadherins and catenins in vivo. Adv Prot Phosphatases 8:227–257

    CAS  Google Scholar 

  • Brady-Kalnay SM, Mourton T et al (1998) Dynamic interaction of PTPμ with multiple cadherins in vivo. J Cell Biol 141:287–296

    Article  PubMed  CAS  Google Scholar 

  • Brugge JS, Erickson RL (1977) Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature 269:346–347

    Article  PubMed  CAS  Google Scholar 

  • Buday L (1999) Membrane-targeting of signaling molecules by SH2/SH3 domain-containing adaptor proteins, Biochem Biophys Acta 1442:187–204

    Google Scholar 

  • Bustelo XR (1996) The VAV family of signal transduction molecules. Crit Rev Oncogen 7:65–88

    CAS  Google Scholar 

  • Cantley LC, Auger KR, Carpenter C et al (1991) Oncogenes and signal transduction. Cell 64:281–302

    Article  PubMed  CAS  Google Scholar 

  • Champion-Arnaud P, Gesnet M-C et al (1991) Activation of transcription via AP-1 or CREB regulatory sites is blocked by protein tyrosine phosphatases. Oncogene 6:1203–1209

    PubMed  CAS  Google Scholar 

  • Charbonneau H, Tonks NK, Walsh KA et al (1988) The leukocyte common antigen (CD45): a putative receptor-linked protein tyrosine phosphatase. Proc Natl Acad Sci USA 85:7182–7186

    Article  PubMed  CAS  Google Scholar 

  • Clark EA, Ledbetter JA, How B (1994) T cells talk to each other. Nature 367:425–428

    Article  PubMed  CAS  Google Scholar 

  • Colledge M, Foehner SC (1998) To muster a cluster: anchoring neurotransmitter receptors at synapses. Proc Natl Acad Sci USA 95:3341–3343

    Article  PubMed  CAS  Google Scholar 

  • Collett MS, Erickson RL (1978) Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci USA 75:2021–2024

    Article  PubMed  CAS  Google Scholar 

  • Debant A, Serra-Pages C, Scipel K et al (1996) The multi-domain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains. Proc Natl Acad Sci USA 93:5466–5471

    Article  PubMed  CAS  Google Scholar 

  • Desai DM, Sap J, Schlessinger J et al (1993) Ligand-mediated negative regulation of a chimeric transmem-brane receptor tyrosine phosphatase. Cell 73:541–554

    Article  PubMed  CAS  Google Scholar 

  • Downward J, Yarden Y, Mayes E et al (1984) Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307:521–527

    Article  PubMed  CAS  Google Scholar 

  • Edelman GM (1985) Cell adhesion and the molecular processes of morphogenesis. Annu Rev Biochem 54:135–169

    Article  PubMed  CAS  Google Scholar 

  • Edelman GM (1993) A golden age for adhesion. Cell Adhesion Commun 1:1–7

    Article  CAS  Google Scholar 

  • Fambrough D, McClure K, Kaziauskas A et al (1999) Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 97:727–741

    Article  PubMed  CAS  Google Scholar 

  • Fanning AS, Anderson JM (1999) Protein modules as organizers of membrane structure. Curr Opin Cell Biol 11:432–439

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JG, Vanderhaeghen P (1998) The ephrins and Eph receptors in neural development. Annu Rev Neurosci 21:309–345

    Article  PubMed  CAS  Google Scholar 

  • Fleischman RA (1993) From white spots to stem cells: the role of the Kit receptor in mammalian development. TIG 9:285–289

    Article  PubMed  CAS  Google Scholar 

  • Gil-Henn H, Volohonsky G, Elson A (2001) Regulation of protein tyrosine phosphatases a and ε by calpain-mediated proteolytic processing. J Biol Chem 276:31772–31779

    Article  PubMed  CAS  Google Scholar 

  • Hawk PB, Oser BL, Summerson WH (1948) Practical physiological chemistry, 12th edn. Blakiston, Philadelphia

    Google Scholar 

  • Heldin C-H (1995) Dimerization of cell surface receptors in signal transduction. Cell 80:213–223

    Article  PubMed  CAS  Google Scholar 

  • Hillier BJ, Christopherson KS, Prehoda KE et al (1999) Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-synthophin complex. Science 284:812–815

    Article  PubMed  CAS  Google Scholar 

  • Hof P, Pluskey S, Dhe-Paganon S et al (1998) Crystal structure of the tyrosine phosphatase SHP-2. Cell 92:441–450

    Article  PubMed  CAS  Google Scholar 

  • Holland SJ, Peles E, Pawson T et al (1998) Cell-contact-dependent signalling in axon growth and guidance: Eph receptor tyrosine kinases and receptor protein tyrosine phosphatase beta. Curr Opin Neurobiol 8:117–127

    Article  PubMed  CAS  Google Scholar 

  • Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80:225–236

    Article  PubMed  CAS  Google Scholar 

  • Hunter T (2000) Signaling—2000 and beyond. Cell 100:113–127

    Article  PubMed  CAS  Google Scholar 

  • Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA 77:1311–1315

    Article  PubMed  CAS  Google Scholar 

  • Kallunki P, Edelman GM, Jones FS (1998) The neural restrictive silencer element can act as both a repressor and enhancer of L1 cell adhesion molecule gene expression during postnatal development. Proc Natl Acad Sci USA 95:3233–3238

    Article  PubMed  CAS  Google Scholar 

  • Kissel H, Tomokhina I, Hardy MP et al (2000) Point mutation in Kit receptor tyrosine kinase reveals essential roles for Kit signaling in spermatogenesis and oogenesis without affecting other Kit responses. EMBO J 19:1312–1326

    Article  PubMed  CAS  Google Scholar 

  • Koretzky GA, Picus J, Schultz J et al (1991) Tyrosine phosphatase CD45 is required for T-cell antigen receptor and CD2-mediated activation of a protein tyrosine kinase and interleukin 2 production. Proc Natl Acad Sci USA 88:2037–2041

    Article  PubMed  CAS  Google Scholar 

  • Krueger NX, Saito H (1992) A human transmembrane pro-tein-tyrosine-phosphatase, PTPζ is expressed in brain and has an N-terminal receptor domain homologous to carbonic anhydrases. Proc Natl Acad Sci USA 89:7417–7421

    Article  PubMed  CAS  Google Scholar 

  • Kuryian J, Cowburn D (1997) Modular peptide recognition domains in eukaryotic signaling. Annu Rev Biophys Biomol Struct 26:259–288

    Article  Google Scholar 

  • Levinson AD, Opperman H, Levintow L et al (1978) Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell 15:561–572

    Article  PubMed  CAS  Google Scholar 

  • Levy JB, Canoll PD, Silbennoinen O et al (1993) The cloning of a receptor-type protein tyrosine phosphatase expressed in the central nervous system. J Biol Chem 268:10573–10581

    PubMed  CAS  Google Scholar 

  • Lorenzen JA, CY Dadabay, Fischer EH (1995) COOH-terminal sequence motifs target the T cell protein tyrosine phosphatase to the ER and nucleus. J Cell Biol 131:631–643

    Article  PubMed  CAS  Google Scholar 

  • Lu PJ, Shou XZ, Shen M et al (1999) Function of WW domains as phosphoserine-or phosphothreonine-binding modules. Science 283:1325–1328

    Article  PubMed  CAS  Google Scholar 

  • Majeti R, Bilwes AM, Noel JP et al (1998) Dimerization-induced inhibition of receptor protein tyrosine phosphatase function through an inhibitory wedge. Science 279:88–91

    Article  PubMed  CAS  Google Scholar 

  • Miklos GLG (1993) Emergence of organizational complexities during metazoan evolution: perspectives from molecular biology, palaeontology and neo-Darwinism. Mem Assoc Australas Palaeontols 15:7–41

    Google Scholar 

  • Milev P, Friedlander DR, Sakurai T et al (1994) Interactions of the chondroitin sulfate proteoglycan phosphacan, the extracellular domain of a receptor-type protein tyrosine phosphatase, with neurons, glia, and neural cell adhesion molecules. J Cell Biol 127:1703–1715

    Article  PubMed  CAS  Google Scholar 

  • Mosinger B Jr, Tillman U, Westphal H et al (1992) Cloning and characterization of a mouse cDNA encoding a cytoplasmic protein-tyrosine-phosphatase. Proc Natl Acad Sci USA 89:499–503

    Article  PubMed  CAS  Google Scholar 

  • Muenke M, Schell U (1995) Fibroblast-growth-factor receptor mutations in human skeletal disorders. TIG 11:308–313

    Article  PubMed  CAS  Google Scholar 

  • Neel BH, Tonks NK (1997) Protein tyrosine phosphatases in signal transduction. Curr Opin Cell Biol 9:293–304

    Article  Google Scholar 

  • Pawson T (1995) Protein modules and signaling networks. Nature 373:573–580

    Article  PubMed  CAS  Google Scholar 

  • Pawson T, Nash P (2000) Protein-protein interactions define specificity in signal transduction. Genes Dev 14:1027–1047

    PubMed  CAS  Google Scholar 

  • Pawson T, Scott JD (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science 278:2075–2080

    Article  PubMed  CAS  Google Scholar 

  • Peles E, Nativ 1995, Campbell PL et al (1995) The carbonic anhydrase domain of receptor tyrosine phosphatase β is a functional ligand for the axonal cell recognition molecule contactin. Cell 82:251–260

    Article  PubMed  CAS  Google Scholar 

  • Peretz A, Gil-Henn H, Sobko H et al (2000) Hypomyelination and increased activity of voltage-gated K+ channels in mice lacking protein tyrosine phosphatase ε. EMBO J 19:4036–4045

    Article  PubMed  CAS  Google Scholar 

  • Pingel JT, Thomas ML (1989) Evidence that the leukocyte-common antigen is required for antigen-induced T lymphocyte proliferation. Cell 58:1055–1065

    Article  PubMed  CAS  Google Scholar 

  • Romero F, Fischer S (1996) Structure and function of Vav. Cell Signal 8:545–553

    Article  PubMed  CAS  Google Scholar 

  • Rotin D, Margolis B, Mohammadi M et al (1992) SH2 domains prevent tyrosine dephosphorylation of the EGF receptor: identification of Tyr 992 as the high-affinity binding site for SH2 domains of phospholipase Cy. EMBO J 11:559–567

    PubMed  CAS  Google Scholar 

  • Schlessinger J (1988) Signal transduction by allosteric receptor oligomerization. Trends Biochem Sci 13:443–447

    Article  PubMed  CAS  Google Scholar 

  • Schlessinger J (1993) How receptor tyrosine kinases activate Ras. Trends Biochem Sci 18:273–275

    Article  PubMed  CAS  Google Scholar 

  • Schlessinger J, Ullrich A (1992) Growth factor signaling by receptor tyrosine kinases. Neuron 9:383–391

    Article  PubMed  CAS  Google Scholar 

  • Shen S-H, Bastien L, Posner BI et al (1991) A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases. Nature 352:736–739

    Article  PubMed  CAS  Google Scholar 

  • Slamon DJ, Clark GM, Wong SG et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  PubMed  CAS  Google Scholar 

  • Sonyang Z, Fanning AS, Fu C et al (1997) Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275:73–77

    Article  Google Scholar 

  • Stone RL, Dixon JE (1994) Protein-tyrosine phosphatases. J Biol Chem 50:31323–31326

    Google Scholar 

  • Sudol M (1996) Structure and function of the WW domain. Prog Biophys Mol Biol 65:113–132

    Article  PubMed  CAS  Google Scholar 

  • Sutherland EW, Rail TW (1960) The relation of adenosine-3′,5′-phosphate and phosphorylase to the actions of catecholamines and other hormones. Pharmacol Rev 12:265–299

    CAS  Google Scholar 

  • Taylor SI (1992) Molecular mechanisms of insulin resistance: lessons from patients with mutations in the insulin receptor gene. Diabetes 41:1473–1490

    Article  PubMed  CAS  Google Scholar 

  • Tessier-Lavigne M (1995) Eph receptor tyrosine kinases, axon repulsion, and the development of topographic maps. Cell 82:345–348

    Article  PubMed  CAS  Google Scholar 

  • Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133

    Article  PubMed  CAS  Google Scholar 

  • Thomas ML (1999) The regulation of antigen-receptor signaling by protein tyrosine phosphatases: a hole in the story. Curr Opin Immunol 11:270–276

    Article  PubMed  CAS  Google Scholar 

  • Tonks NK, Diltz CD, Fischer EH (1988 a) Purification of the major protein-tyrosine-phosphatases of human placenta. J Biol Chem 263:6722–6730

    PubMed  CAS  Google Scholar 

  • Tonks NK, Diltz CD, Fischer EH (1988 b) Characterization of the major protein tyrosine phosphatases of human placenta. J Biol Chem 263:6731–6737

    PubMed  CAS  Google Scholar 

  • Trowbridge IS, Thomas ML (1994) CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu Rev Immunol 12:85–116

    Article  PubMed  CAS  Google Scholar 

  • Ullrich L, Coussens L, Hayflick JS et al (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309:418–425

    Article  PubMed  CAS  Google Scholar 

  • Vaughan L, Weber P, D’Alessandri L et al (1994) Tenascin-contactin/Fll interactions: a clue for a developmental role? Perspect Dev Neurobiol 1:43–52

    Google Scholar 

  • Weiss A, Schlessinger J (1998) Switching signals on or off by receptor dimerization. Cell 94:277–280

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Nishida T, Miyajima N et al (1983) The erbB gene of avian erythroblastosis virus is a member of the src gene family. Cell 35:71–78

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Tonks NK (1991) Isolation of a cDNA clone encoding a novel human protein tyrosine phosphatase with homology to the cytoskeletal-associated proteins band 4.1, ezrin and talin. Proc Natl Acad Sci USA 88:5949–5953

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z, Shen S-H, Fischer EH (1995) Structure, regulation, and function of SH2 domain-containing protein tyrosine phosphatases. Adv Prot Phos 9:297–317

    CAS  Google Scholar 

  • Zontag GCM, Koningstein GM, Jiang Y-P et al (1995) Homophilic interactions mediated by receptor tyrosine phosphatases gamma and kappa. J Biol Chem 270: 14247–14250

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischer, E.H. (2003). How Proteins Speak with One Another In Cell Signaling. In: Feinendegen, L.E., Shreeve, W.W., Eckelman, W.C., Bahk, YW., Wagner, H.N. (eds) Molecular Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55539-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55539-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62427-8

  • Online ISBN: 978-3-642-55539-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics