Skip to main content

Amino Acid Transport Studies in Brain Tumors

  • Chapter
Molecular Nuclear Medicine

Abstract

Amino acids are important biological substrates that play crucial roles in virtually all biological processes. These ionic nutrients serve not only as basic modules of proteins and hormones but also as neurotransmitters, synaptic modulators, and neurotransmitter precursors. Transfer of amino acids across the hydrophobic domain of the plasma membrane is mediated by proteins that recognize, bind, and transport them from the extracellular medium into the cell, or vice versa. In the early 1960s different substrate-specific transport systems for amino acids in mammalian cells were identified (Christensen 1990). General properties of mammalian amino acid transporters were revealed, such as stereospecificity and broad substrate specificity (i.e., several amino acids share the same transport system). Functional criteria such as the type of amino acid (e.g., basic, acidic) or thermodynamic properties (energy dependence of transport) were used to classify amino acid transporters. This functional classification has been retained to date, since structural information on amino acid transporters is incomplete. The molecular identification of amino acid transporters or related proteins started in the early 1990s, and studies on the structure-function relationship and the molecular genetics of the pathology associated with these transporters has gained considerable interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bader JB, Samnick S, Schaefer A et al (1998) Contribution of nuclear medicine to the diagnosis of recurrent brain tumors and cerebral radionecrosis. Radiologe 38:924–929

    Article  PubMed  CAS  Google Scholar 

  • Bader JB, Samnick S, Moringlane JR et al (1999) Evaluation of l-3-[123I]iodo-alpha-methyltyrosine SPECT and [18F]fluorodeoxyglucose PET in the detection and grading of recurrences in patients pretreated for gliomas at follow-up: a comparative study with stereotactic biopsy. Eur J Nucl Med 26:144–151

    Article  PubMed  CAS  Google Scholar 

  • Bergström M, Collins VP, Ehrin E et al (1983) Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]ED-TA, [11C]glucose, and [11C]methionine. J Comput Assist Tomogr 7:1062–1066

    Article  PubMed  Google Scholar 

  • Bergström M, Ericson K, Hagenfeldt L et al (1987 a) PET study of methionine accumulation in glioma and normal brain tissue: competition with branched chain amino acids. J Comput Assist Tomogr 11:208–213

    Article  PubMed  Google Scholar 

  • Bergström M, Lundqvist H, Ericson K et al (1987b) Comparison of the accumulation kinetics of L-(methyl-11C)-methionine and D-(methyl-11C)-methionine in brain tumors studied with positron emission tomography. Acta Radiol 28:225–229

    Article  PubMed  Google Scholar 

  • Biersack HJ, Coenen HH, Stöcklin G et al (1989) Imaging of brain tumors with L-3-[123I]Iodo-a-methyl tyrosine and SPECT. J Nucl Med 30:110–112

    PubMed  CAS  Google Scholar 

  • Blau M, Manske RS, Bender MA (1962) Clinical experience with Selen-75 selenomethionine for pancreas visualization. J Nucl Med 3:202

    Google Scholar 

  • Broer S, Broer A, Hamprecht B (1995) The 4F2hc surface antigen is necessary for expression of system L-like neutral amino acid-transport activity in C6-BU-1 rat glioma cells: evidence from expression studies in Xenopus laevis oocytes. Biochem J 312:863–870

    PubMed  CAS  Google Scholar 

  • Broer S, Broer A, Hamprecht B (1997) Expression of the surface antigen 4F2hc affects system-L-like neutral-amino-acid-transport activity in mammalian cells. Biochem J 324:535–541

    PubMed  CAS  Google Scholar 

  • Brookes N (1988) Neutral amino acid transport in astrocytes: characterization of Na+-dependent and Na+-independent components of alpha-aminoisobutyric acid uptake. J Neurochem 51:1913–1918

    Article  PubMed  CAS  Google Scholar 

  • Byrne TN (1994) Imaging of gliomas. Semin Oncol 21:162–171

    PubMed  CAS  Google Scholar 

  • Christensen HN (1990) Role of amino acid transport and countertransport in nutrition and metabolism. Phys Rev 70:43–77

    CAS  Google Scholar 

  • Coenen HH, Kling P, Stöcklin G (1989) Cerebral metabolism of L-[2-18F]fluoro-tyrosine, a new PET tracer of protein synthesis. J Nucl Med 30:1367–1372

    PubMed  CAS  Google Scholar 

  • Coleman RE, Hoffman JM, Hanson MW et al (1991) Clinical application of PET for the evaluation of brain tumors. J Nucl Med 32:616–622

    PubMed  CAS  Google Scholar 

  • Cook GJR, Maisey MN, Fogelman I (1999) Normal variants, artefacts and interpretative pitfalls in PET imaging with 18-fluoro-2-deoxyglucose and carbon-11-methionine. Eur J Nucl Med 26:1363–1378

    Article  PubMed  CAS  Google Scholar 

  • Deehan B, Carnochan P, Trivedi M et al (1993) Uptake and distribution of L-3-[I-125] iodo-alpha-methyl tyrosine in experimental rat tumors: comparison with blood flow and growth rate. Eur J Nucl Med 20:101–106

    Article  PubMed  CAS  Google Scholar 

  • Del Sole A, Falini A, Ravasi L et al (2001) Anatomical and biochemical investigation of primary brain tumors. Eur J Nucl Med 28:1851–1872

    Article  PubMed  Google Scholar 

  • Derlon JM, Bourdet C, Bustany P et al (1989) [11C]L-methionine uptake in gliomas. Neurosurgery 25:720–728

    Article  PubMed  CAS  Google Scholar 

  • De Wolde H, Pruim J, Mastik MF et al (1997) Proliferative activity in human brain tumors: comparison of histopathology and L-[1-(11)C]tyrosine PET. J Nucl Med 38:1369–1374

    PubMed  Google Scholar 

  • Floeth FW, Aulich A, Langen KJ et al (2001) MR imaging and single-photon emission CT findings after gene therapy for human glioblastoma. Am J Neuroradiol 22:1517–1527

    PubMed  CAS  Google Scholar 

  • Fukasawa Y, Segawa H, Kim JY et al (2000) Identification and characterization of a Na(+)-independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral D-and L-amino acids. J Biol Chem 275:9690–9698

    Article  PubMed  CAS  Google Scholar 

  • Goldman S, Levivier M, Pirotte B et al. (1997) Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med 38:1459–1462

    PubMed  CAS  Google Scholar 

  • Grosu AL, Weber W, Feldmann HJ et al (2000) First experience with I-123-alpha-methyl-tyrosine SPECT in the 3-D radiation treatment planning of brain gliomas. Int J Radiat Oncol Biol Phys 47:517–526

    Article  PubMed  CAS  Google Scholar 

  • Guth-Tougelidis B, Muller S, Mehdorn MM et al (1995) Uptake of DL-3-123I-iodo-alpha-methyltyrosine in recurrent brain tumors. Nuklearmedizin 34:71–75

    PubMed  CAS  Google Scholar 

  • Hamacher K (1999) Synthesis of n.c.a. eis-and trans-4-[18F]fluoro-L-proline, a radiotracer for PET-investigation of disordered matrix protein synthesis. J Labelled Compound Radiopharm 42:1135–1142

    Article  CAS  Google Scholar 

  • Hamacher K, Coenen HH (2002) Efficient routine production of the 18F-labelled amino acid O-(2-[18F]fluoroethyl)-L-tyrosine. Appl Radiat Isotop 57:853–856

    Article  CAS  Google Scholar 

  • Haynes BF, Hemler ME, Mann DL et al (1981) Characterization of a monoclonal antibody (4F2) that binds to human monocytes and to a subset of activated lymphocytes. J Immunol 126:1409–1414

    PubMed  CAS  Google Scholar 

  • Hemler ME, Strominger JL (1982) Characterization of antigen recognized by the monoclonal antibody (4F2): different molecular forms on human T and B lymphoblastoid cell lines. J Immunol 129:623–628

    PubMed  CAS  Google Scholar 

  • Herholz K, Hölzer T, Bauer B et al (1998) 11 C-methionine PET for differential diagnosis of low-grade-gliomas. Neurology 50:1316–1322

    Article  PubMed  CAS  Google Scholar 

  • Hubner KF, Purvis JT, Mahaley SM Jr et al (1982) Brain tumor imaging by positron emission computed tomography using HC-labeled amino acids. Comput Assist Tomogr 6:544–550

    Article  CAS  Google Scholar 

  • Inoue T, Tomiyoshi K, Higuichi T et al (1998) Biodistribution studies on L-3-[fluorine-18] fluoro-alpha-methyl tyrosine: a potential tumor-detecting agent. J Nucl Med 39:663–667

    PubMed  CAS  Google Scholar 

  • Ishiwata K, Kubota K, Murakami M et al (1993) Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo? J Nucl Med 34:1936–1943

    PubMed  CAS  Google Scholar 

  • Jager PL, Vaalburg W, Pruim J et al (2001) Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 42:432–445

    PubMed  CAS  Google Scholar 

  • Jansen EP, Dewit LG, van Herk M et al (2000) Target volumes in radiotherapy for high-grade malignant glioma of the brain. Radiother Oncol 56:151–156

    Article  PubMed  CAS  Google Scholar 

  • Kaim AH, Weber B, Kurrer MO et al (2002) Autoradiographic quantification of 18F-FDG uptake in experimental soft-tissue abscesses in rats. Radiology 223:446–451

    Article  PubMed  Google Scholar 

  • Kanai Y, Segawa H, Miyamoto K et al (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 273:23629–23632

    Article  PubMed  CAS  Google Scholar 

  • Kaschten B, Stevenaert A, Sadzot B et al (1998) Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluoro-deoxyglucose and/or carbon-11-methionine. J Nucl Med 39:778–785

    PubMed  CAS  Google Scholar 

  • Kawai K, Fujibayashi Y, Saji H et al (1991) A strategy for the study of cerebral amino acid transport using iodine-123-labeled amino acid radiopharmaceutical: 3-iodo-alpha-methyl-L-tyrosine. J Nucl Med 32:819–824

    PubMed  CAS  Google Scholar 

  • Kilberg MS, Stevens BR, Novak DA (1993) Recent advances in mammalian amino acid transport. Annu Rev Nutr 13:137–165

    Article  PubMed  CAS  Google Scholar 

  • Kloss G, Leven M (1979) Accumulation of radioiodinated tyrosine derivatives in the adrenal medulla and in melanomas. Eur J Nucl Med 4:179–186

    Article  PubMed  CAS  Google Scholar 

  • Kloster G, Bockslaff H (1982) L-3-123I-a-methyltyrosine for melanoma detection: a comparative evaluation. Int J Nucl Med Biol 9:259–269

    Article  PubMed  CAS  Google Scholar 

  • Kopka K, Riemann B, Friedrich M et al (2001) Characterization of 3-[(123)I]iodo-L-alpha-methyl tyrosine transport in astrocytes of neonatal rats. J Neurochem 76:97–104

    Article  PubMed  CAS  Google Scholar 

  • Kuwert T, Morgenroth C, Woesler B et al (1996) Uptake of iodine-123-a-methyltyrosine by gliomas and non-neoplastic brain lesions. Eur J Nucl Med 23:1345–1353

    Article  PubMed  CAS  Google Scholar 

  • Kuwert T, Woesler B, Morgenroth C et al (1998) Diagnosis of recurrent glioma with SPECT and iodine-123-alphamethyl tyrosine. J Nucl Med 39:23–27

    PubMed  CAS  Google Scholar 

  • Langen K-J, Weckesser M (1999) Recent advances of PET in the diagnosis of brain tumors. Frontiers in radiation therapy and oncology front. Radiat Ther Onkol 33:9–22

    Article  CAS  Google Scholar 

  • Langen KJ, Coenen HH, Roosen N et al (1990) SPECT studies of brain tumors with L-3-[123I]iodo-a-methyl tyrosine: comparison with PET, 124IMT and first clinical results. I Nucl Med 31:281–286

    CAS  Google Scholar 

  • Langen KJ, Roosen N, Coenen HH et al (1991) Brain and brain tumor uptake of L-3-[123I]iodo-a-methyl tyrosine: competition with natural L-amino acids. J Nucl Med 32:1225–1228

    PubMed  CAS  Google Scholar 

  • Langen KJ, Ziemons K, Kiwit JCW et al (1997) [123I]iodo-a-methyltyrosine SPECT and [11C]-L-methionine uptake in cerebral gliomas: a comparative Study using SPECT and PET. J Nucl Med 38:517–522

    PubMed  CAS  Google Scholar 

  • Langen KJ, Clauss RP, Holschbach M et al (1998) Comparison of iodotyrosines and methionine uptake in a rat glioma model. J Nucl Med 39:1596–1599

    PubMed  CAS  Google Scholar 

  • Langen KJ, Mühlensiepen H, Holschbach M et al (2000) Transport mechanisms of 3-[123I]iodo-a-methyl-L-tyrosine in a human glioma cell line: comparison with [methyl-3H]-L-methionine. J Nucl Med 41:1250–1255

    PubMed  CAS  Google Scholar 

  • Langen KJ, Bonnie R, Mühlensiepen H et al (2001) 3-[123I]iodo-alpha-methyl-L-tyrosine transport and 4F2 antigen expression in human glioma cells. Nucl Med Biol 28:5–11

    Article  PubMed  CAS  Google Scholar 

  • Langen KJ, Mühlensiepen H, Schmieder S et al (2002 a) Transport of eis-and trans-4-[18F]Fluoro-L-proline in F98 glioma cells. Nucl Med Biol 29:685–692

    Article  PubMed  CAS  Google Scholar 

  • Langen KJ, Pauleit D, Heinz H et al (2002b) [123I]Iodo-a-methyl-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 29:625–631

    Article  PubMed  CAS  Google Scholar 

  • Langstrom B, Antoni G, Gullberg P et al (1987) Synthesis of L-and D-[methyl-11C]methionine. J Nucl Med 28:1037–1040

    PubMed  CAS  Google Scholar 

  • Leeds NE, Jackson EF (1994) Current imaging techniques for the evaluation of brain neoplasms. Curr Opin Oncol 6:254–261

    Article  PubMed  CAS  Google Scholar 

  • Levivier M, Wilder D, Goldman S et al (1999) Positron emission tomography in stereotactic conditions as a functional imaging technique for neurosurgical guidance. In: Alexander El, Maciunas RJ (eds) Advanced neurosurgical navigation. Thieme, New York, pp 85–99

    Google Scholar 

  • Mastroberardino L, Spindler B, Pfeiffer R et al (1998) Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395:288–291

    Article  PubMed  CAS  Google Scholar 

  • Mosskin M, Ericson K, Hindmarsh T et al (1989) Positron emission tomography compared with magnetic resonance imaging and computed tomography in supratentorial gliomas using multiple stereotactic biopsies as reference. Acta Radiol 30:225–232

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T, Kanno I, Shishido F et al (1991) Clinical values of PET with 18F-fluorodeoxyglucose and L-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol 31:197–202

    Article  Google Scholar 

  • Ogawa T, Shishido F, Kanno I et al (1993) Cerebral glioma: evaluation with methionine PET. Radiology 186:45–53

    PubMed  CAS  Google Scholar 

  • Ogawa T, Miura S, Murakami M et al (1996) Quantitative evaluation of neutral amino acid transport in cerebral gliomas using positron emission tomography and fluorine-18 fluorophenylalanine. Eur J Nucl Med 23:889–895

    Article  PubMed  CAS  Google Scholar 

  • Oldendorf WH (1991) Saturation of amino acid uptake by human brain tumor demonstrated by SPECT. J Nucl Med 32:1229–1230

    PubMed  CAS  Google Scholar 

  • Pardridge WM, Oldendorf WH (1977) Transport of metabolic substrates through the blood-brain barrier. J Neurochem 28:5–12

    Article  PubMed  CAS  Google Scholar 

  • Pardridge WM, Oldendorf WH, Cancilla P et al (1986) Blood-brain barrier: interface between internal medicine and the brain. Ann Intern Med 105:82–95

    PubMed  CAS  Google Scholar 

  • Pauleit D, Langen KJ, Floeth F et al (2002) Improved delineation of the tumor extension using F18-FET PET compared with MRI in cerebral gliomas? (Abstract SNM meeting) J Nucl Med 43:112P

    Google Scholar 

  • Pfeiffer R, Rossier G, Spindler B et al (1999) Amino acid transport of y+L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. EMBO J 18:49–57

    Article  PubMed  CAS  Google Scholar 

  • Pineda M, Fernandez E, Torrents D et al (1999) Identification of a membrane protein, LAT-2, that co-expresses with 4F2 heavy chain, an L-type amino acid transport activity with broad specificity for small and large zwitterionic mino acids. J Biol Chem 274:19738–19744

    Article  PubMed  CAS  Google Scholar 

  • Pruim J, Willemsen AT, Molenaar WM et al (1995) Brain tumors: L-[l-C-11]tyrosine PET for visualization and quantification of protein synthesis rate. Radiology 197:221–226

    PubMed  CAS  Google Scholar 

  • Ribom D, Eriksson A, Hartman M et al (2001) Positron emission tomography (ll)C-methionine and survival in patients with low-grade gliomas. Cancer 92:1541–1549

    Article  PubMed  CAS  Google Scholar 

  • Riemann B, Stogbauer F, Kopka K et al (1999) Kinetics of 3-[(123)I]iodo-L-alpha-methyltyrosine transport in rat C6 glioma cells. Eur J Nucl Med 26:1274–1278

    PubMed  CAS  Google Scholar 

  • Riemann B, Kopka K, Stogbauer F et al (2001) Kinetic parameters of 3-[(123)I]iodo-L-alpha-methyl tyrosine ([(123)I]IMT) transport in human GOS3 glioma cells. Nucl Med Biol 28:293–297

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr, Daniels GA, Boerner P et al (1988) Neutral amino acid transport systems in animal cells: potential targets of oncogene action and regulators of cellular growth. J Membr Biol 104:1–20

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Tamba M, Ishii T et al (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274:11455–11458

    Article  PubMed  CAS  Google Scholar 

  • Schmidt D, Gottwald U, Langen KJ et al (2001) 3-[123I]Iodo-a-methyl-L-tyrosine uptake in cerebral gliomas: relationship to histopathological grading and prognosis. Eur J Nucl Med 28:855–861

    Article  PubMed  CAS  Google Scholar 

  • Segawa H, Fukusawa Y, Miyamoto K et al (1999) Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem 274:19745–19751

    Article  PubMed  CAS  Google Scholar 

  • Shoup TM, Olson J, Hoffman JM et al (1999) Synthesis and evaluation of [18F]l-amino-3-fluorocyclobutane-l-carboxylic acid to image brain tumors. J Nucl Med 40:331–338

    PubMed  CAS  Google Scholar 

  • Teixeira S, Kuhn LC (1991) Post-transcriptional regulation of the transferrin receptor and 4F2 antigen heavy chain mRNA during growth activation of spleen cells. Eur J Biochem 202:819–826

    Article  PubMed  CAS  Google Scholar 

  • Tisljar U, Kloster G, Ritzl F et al (1979) Accumulation of radioiodinated alpha-methyltyrosine in pancreas of mice: concise communication. J Nucl Med 20:973–976

    PubMed  CAS  Google Scholar 

  • Torrents D, Estevez R, Pineda M et al (1998) Identification and characterization of a membrane protein (y+L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+L. A candidate gene for lysinuric protein intolerance. J Biol Chem 273:32437–32445

    Article  PubMed  CAS  Google Scholar 

  • Vaalburg W, Coenen HH, Crouzel C et al (1992) Amino acids for the measurement of protein synthesis in vivo by PET. Int J Rad Appl Instrum B 19:227–237

    Article  PubMed  CAS  Google Scholar 

  • Weber W, Bartenstein P, Gross MW et al (1997) Fluorine-18-FDG PET and iodine-123-IMT SPECT in the evaluation of brain tumors. J Nucl Med 38:802–808

    PubMed  CAS  Google Scholar 

  • Weber WA, Dick S, Reidl G et al (2000) Correlation between postoperative 3-[(123)I]iodo-L-alpha-methyltyrosine uptake and survival in patients with gliomas. J Nucl Med 42:1144–1150

    Google Scholar 

  • Weber WA, Wester HJ, Grosu AL et al (2000) O-(2-[18F] Fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 27:542–549

    Article  PubMed  CAS  Google Scholar 

  • Weckesser M, Matheja P, Rickert CH et al (2000) Evaluation of the extension of cerebral gliomas by scintigraphy. Strahlenther Onkol 176:180–185

    Article  PubMed  CAS  Google Scholar 

  • Weckesser M, Matheja P, Schwarzrock A et al (2002) Prognostic significance of amino acid transport imaging in patients with brain tumors. Neurosurgery 50:958–964

    PubMed  Google Scholar 

  • Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, Stöcklin G (1999) Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 40:205–212

    PubMed  CAS  Google Scholar 

  • Wienhard K, Herholz K, Coenen HH et al (1991) Increased amino acid transport into brain tumors measured by PET of L-[2-18F]fluoro-tyrosine. J Nucl Med 32:1338–1346

    PubMed  CAS  Google Scholar 

  • Woesler B, Kuwert T, Morgenroth C et al (1997) Non-invasive grading of primary brain tumors: results of a comparative study between SPET with 1231-alpha-methyl tyrosine and PET with 18F-deoxyglucose. Eur J Nucl Med 24:428–434

    PubMed  CAS  Google Scholar 

  • Würker M, Herholz K, Voges J et al (1996) Glucose consumption and methionine uptake in low-grade gliomas after iodine-125 brachytherapy. Eur J Nucl Med 23:583–586

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Langen, KJ. (2003). Amino Acid Transport Studies in Brain Tumors. In: Feinendegen, L.E., Shreeve, W.W., Eckelman, W.C., Bahk, YW., Wagner, H.N. (eds) Molecular Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55539-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55539-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62427-8

  • Online ISBN: 978-3-642-55539-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics