Skip to main content

Genomics of Erwinia amylovora and Related Erwinia Species Associated with Pome Fruit Trees

  • Chapter
  • First Online:

Abstract

Erwinia amylovora, the causal agent of fire blight disease of apples and pears, is one of the most important plant bacterial pathogens with worldwide economic significance. In this chapter, the author describes up-to-date information about the genomes of E. amylovora and related Erwinia species primarily associated with pome fruit trees, provides recent developments in genome-enabled understanding of E. amylovora virulence, and highlights latest comparative and functional genomic studies of E. amylovora, including proteomics and transcriptomics, in understanding the biology, population diversity, and evolution of this important group of pathogens. The chapter also summarizes the current progress in understanding of the pathogen and its virulence mechanism from genome sequencing data, as well as the potential evolutionary origin of these Erwinia species. In the introduction part, the chapter contains comprehensive information about the distribution, economic losses, and spread of the fire blight disease, the characteristics of the pathogen as well as its key features associated with virulence factors and regulatory systems, including type III secretion systems and the exopolysaccharide amylovoran. Future perspectives and research directions from systems biology to host–pathogen interactions are also suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aldridge P, Bernhard F, Bugert P, Coplin DL, Geider K (1997a) Characterization of a gene locus from Erwinia amylovora with regulatory functions in exopolysaccharide synthesis of Erwinia spp. Can J Microbiol 44:657–666

    Google Scholar 

  • Aldridge P, Metzger M, Geider K (1997b) Genetics of sorbitol metabolism in Erwinia amylovora and its influence on bacterial virulence. Mol Genom Genet 256:611–619

    CAS  Google Scholar 

  • Ancona V, Zhao YF (2013) CsrA is a positive regulator of virulence factors in Erwinia amylovora. Phytopahtology 103(S2):6

    Google Scholar 

  • Ancona V, Li WT, Zhao YF (2014) Alternative sigma factor RpoN and its modulator protein YhbH are indispensable for Erwinia amylovora virulence. Mol Plant Pathol 15:58–66

    CAS  PubMed  Google Scholar 

  • Ashton D (2008) Fire blight in Switzerland. Aust Fruitgrower 2:5

    Google Scholar 

  • Asselin JE, Bonasera JM, Kim JF, Oh CS, Beer SV (2011) Eop1 from a Rubus strain of Erwinia amylovora functions as a host-range limiting factor. Phytopathology 101:935–944

    CAS  PubMed  Google Scholar 

  • Axtell MJ, Staskawicz BJ (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112:369–377

    CAS  PubMed  Google Scholar 

  • Axtell MJ, Chisholm ST, Dahlbeck D, Staskawicz BJ (2003) Genetic and molecular evidence that the Pseudomonas syringae type III effector protein AvrRpt2 is a cysteine protease. Mol Microbiol 49:1537–1546

    CAS  PubMed  Google Scholar 

  • Baldo A, Norelli JL Jr, Farrell RE, Bassett CL, Aldwinckle HS, Malnoy M (2010) Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus × domestica) with Erwinia amylovora. BMC Plant Biol 10:1

    PubMed Central  PubMed  Google Scholar 

  • Barny MA, Guinebretiere MH, Marcais B, Coissac E, Paulin JP, Laurent J (1990) Cloning of a large gene cluster involved in Erwinia amylovora CFBP1430 virulence. Mol Microbiol 4:777–786

    CAS  PubMed  Google Scholar 

  • Belkhadir Y, Nimchuk Z, Hubert DA, Mackey D, Dangl JL (2004) Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. Plant Cell 16:2822–2835

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bellemann P, Geider K (1992) Localization of transposon insertions in pathogenicity mutants of Erwinia amylovora and their biochemical characterization. J Gen Microbiol 138:931–940

    CAS  PubMed  Google Scholar 

  • Bellemann P, Bereswill S, Berger S, Geider K (1994) Visualization of capsule formation by Erwinia amylovora and assays to determine amylovoran synthesis. Int J Biol Macromol 16:290–296

    CAS  PubMed  Google Scholar 

  • Bennet RA, Billing E (1980) Origin of the polysaccharide component of ooze from plants infected with Erwinia amylovora. J Gen Microbiol 116:341–349

    Google Scholar 

  • Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ (1994) RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265:1856–1860

    CAS  PubMed  Google Scholar 

  • Bereswill S, Geider K (1997) Characterization of the rcsB gene from Erwinia amylovora and its influence on exopolysaccharide synthesis and virulence of the fire blight pathogen. J Bacteriol 179:1354–1361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bereswill S, Jock S, Aldridge P, Jansen JD, Geider K (1997) Molecular characterization of natural Erwinia amylovora strains deficient in levan synthesis. Physiol Mol Plant Pathol 51:215–225

    CAS  Google Scholar 

  • Bernhard F, Poetter K, Geider K, Coplin DL (1990) The rcsA gene from Erwinia amylovora: identification, nucleotide sequence, and regulation of exopolysaccharide biosynthesis. Mol Plant Microbe Interact 3:29–437

    Google Scholar 

  • Bernhard F, Coplin DL, Geider K (1993) A gene cluster for amylovoran synthesis in Erwinia amylovora: characterization and relationship to cps genes in Erwinia stewartii. Mol Gen Genet 239:158–168

    CAS  PubMed  Google Scholar 

  • Berry MC, McGhee GC, Zhao YF, Sundin GW (2009) Effect of a waaL mutation on lipopolysaccharide composition, oxidative stress survival, and virulence in Erwinia amylovora. FEMS Microbiol Lett 291:80–87

    CAS  PubMed  Google Scholar 

  • Bobev SG, van Vaernbergh J, Maes M (2007) First report of fire blight on Pyrus elaeagrifolia and Amelanchier sp. in Bulgaria. Plant Dis 91:110

    Google Scholar 

  • Bocsanczy AM, Nissinen RM, Oh C-S, Beer SV (2008) HrpN of Erwinia amylovora functions in the translocation of DspA/E into plant cells. Mol Plant Pathol 9:425–434

    CAS  PubMed  Google Scholar 

  • Bocsanczy AM, Schneider DJ, DeClerck GA, Cartinhour S, Beer SV (2012) HopX1 in Erwinia amylovora functions as an avirulence protein in apple and is regulated by HrpL. J Bacteriol 194:553–560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bogdanove AJ, Wei ZM, Zhao L, Beer SV (1996) Erwinia amylovora secretes harpin via a type III pathway and contains a homolog of yopN of Yersinia spp. J Bacteriol 178:1720–1730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bogdanove AJ, Bauer DW, Beer SV (1998a) Erwinia amylovora secretes DspE, a pathogenicity factor and functional AvrE homolog, through the Hrp (type III secretion) pathway. J Bacteriol 180:2244–2247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bogdanove AJ, Kim JF, We ZM, Kolchinsky I, Charkowski AO, Conlin AK, Collmer A, Beer SV (1998b) Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato. Proc Natl Acad Sci USA 95:1325–1330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bogs J, Geider K (2000) Molecular analysis of sucrose metabolism of Erwinia amylovora and influence on bacterial virulence. J Bacteriol 182:5351–5358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonasera JM, Meng X, Owens T, Beer SV (2006) Interaction of DspE/A, a pathogenicity/avriulence protein of Erwinia amylovora, with pre-ferredoxin from apple and its relationship to photosynthetic efficiency. Acta Hortic 704:473–477

    CAS  Google Scholar 

  • Boureau T, El Maarouf-Bouteau H, Garnier A, Brisset MN, Perino C, Pucheu I, Barny MA (2006) DspA/E, a type III effector essential for Erwinia amylovora pathogenicity and growth in planta, induces cell death in host apple and nonhost tobacco plants. Mol Plant Microbe Interact 19:16–24

    CAS  PubMed  Google Scholar 

  • Boureau T, Siamer S, Perino C, Gaubert S, Patrit O, Degrave A, Fagard M, Chevreau E, Barny MA (2011) The HrpN effector of Erwinia amylovora, which is involved in type III translocation, contributes directly or indirectly to Callose elicitation on apple leaves. Mol Plant Microbe Interact 24:577–584

    CAS  PubMed  Google Scholar 

  • Bugert P, Geider K (1995) Molecular analysis of the ams operon required for exopolysaccharide synthesis of Erwinia amylovora. Mol Microbiol 15:917–933

    CAS  PubMed  Google Scholar 

  • Chiou C-S, Jones AL (1995) Molecular analysis of high-level streptomycin resistance in Erwinia amylovora. Phytopathology 85:324–328

    CAS  Google Scholar 

  • Chisholm ST, Dahlbeck D, Krishnamurthy N, Day B, Sjolander K, Staskawicz BJ (2005) Molecular characterization of proteolytic cleavage sites in the Pseudomonas syringae effector AvrRpt2. Proc Natl Acad Sci USA 102:2087–2092

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232

    CAS  PubMed  Google Scholar 

  • Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287

    CAS  PubMed  Google Scholar 

  • Coaker G, Falick A, Staskawicz B (2005) Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin. Science 308:548–550

    CAS  PubMed  Google Scholar 

  • Coaker G, Zhu G, Ding Z, van Doren SR, Staskawicz B (2006) Eukaryotic cyclophilin as a molecular switch for effector activation. Mol Microbiol 61:1485–1496

    CAS  PubMed  Google Scholar 

  • Coleman M, Pearce R, Hitchin E, Busfield F, Mansfield JW, Roberts IS (1990) Molecular cloning, expression and nucleotide sequence of the rcsA gene of Erwinia amylovora, encoding a positive regulator of capsule expression: evidence for a family of related capsule activator proteins. J Gen Microbiol 136:1799–1806

    CAS  PubMed  Google Scholar 

  • Coyier DL, Covey RP (1975) Tolerance of Erwinia amylovora to streptomycin sulfate in Oregon and Washington. Plant Dis Rep 59:849–852

    CAS  Google Scholar 

  • Crosse JE, Bennett M, Garrett CME (1958) Fire blight of pear in England. Nature 182:1530

    Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    CAS  PubMed Central  PubMed  Google Scholar 

  • Day B, Dahlbeck D, Huang J, Chisholm ST, Li D, Staskawicz BJ (2005) Molecular basis for the RIN4 negative regulation of RPS2 disease resistance. Plant Cell 17:1292–1305

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Maayer P, Venter SN, Kamber T, Duffy B, Coutinho TA, Smits THM (2011) Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genom 12:576

    Google Scholar 

  • DebRoy S, Thilmony R, Kwack YB, Nomura K, He SY (2004) A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci USA 101:9927–9932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deckers T (1996) Fire blight: the present state of its occurrence in Belgium and phytosanitory measures to control the problem. Parasitica 52:127–131

    Google Scholar 

  • Degrave A, Fagard M, Perino S, Brisset MN, Gaubert S, Laroche S, Patrit O, Barny MA (2008) Erwinia amylovora type three-secreted proteins trigger cell death and defense responses in Arabidopsis thaliana. Mol Plant Microbe Interact 21:1076–1086

    CAS  PubMed  Google Scholar 

  • Dellagi A, Reis D, Vian B, Expert D (1999) Expression of the ferrioxamine receptor gene of Erwinia amylovora CFBP1430 during pathogenesis. Mol Plant Microbe Interact 12:463–466

    CAS  PubMed  Google Scholar 

  • Donat V, Biosca EG, Penalver J, Lopez MM (2007) Exploring diversity among Spanish strains of Erwinia amylovora and possible infection sources. J Appl Microbiol 103:1639–1649

    CAS  PubMed  Google Scholar 

  • Du Z, Geider K (2002) Characterization of an activator gene upstream of lsc, involved in levan synthesis of Erwinia amylovora. Physiol Mol Plant Pathol 60:9–17

    Google Scholar 

  • Duffy B, Schärer HJ, Vogelsanger J, Schoch B, Holliger E (2005) Regulatory measures against Erwinia amylovora in Switzerland. EPPO Bull 35:239–244

    Google Scholar 

  • Eastgate JA (2000) Erwinia amylovora: the molecular basis of fire blight disease. Mol Plant Pathol 1:325–329

    CAS  PubMed  Google Scholar 

  • Eastgate JA, Taylor N, Coleman MJ, Healy B, Thompson L, Robert IS (1995) Cloning, expression and characterization of the lon gene of Erwinia amylovora: Evidence for a heat shock response. J Bacteriol 177:932–937

    CAS  PubMed Central  PubMed  Google Scholar 

  • EPPO (1992) Quarantine procedure: Erwinia amylovora—sampling and test methods. EPPO Bull 22:225–231

    Google Scholar 

  • Foster GC, McGhee GC, Jones AL, Sundin GW (2004) Nucleotide sequences, genetic organization, and distribution of pEU30 and pEL60 from Erwinia amylovora. Appl Environ Microbiol 70:7539–7544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaudriault S, Malandrin L, Paulin JP, Barny MA (1997) DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via Hrp secretion pathway in a DspB-dependent way. Mol Microbiol 26:1057–1069

    CAS  PubMed  Google Scholar 

  • Gaudriault S, Brisset MN, Barny MA (1998) HrpW of Erwinia amylovora, a new Hrp-secreted protein. FEBS Lett 428:224–228

    CAS  PubMed  Google Scholar 

  • Gaudriault S, Paulin JP, Barny MA (2002) The DspB/F protein of Erwinia amylovora is a type III secretion chaperone ensuring efficient intrabacterial production of the Hrp-secreted DspA/E pathogenicity factor. Mol Plant Pathol 3:313–320

    CAS  PubMed  Google Scholar 

  • Gehring I, Geider K (2012) Differentiation of Erwinia amylovora and Erwinia pyrifoliae strains with single nucleotide polymorphisms and by synthesis of dihydrophenylalanine. Curr Microbiol 65:73–84

    CAS  PubMed  Google Scholar 

  • Geider K, Auling G, Du Z, Jakovljevic V, Jock S, Voilksch B (2006) Erwinia tasmaniensis sp nov., a non-phytopathogenic bacterium from apple and pear trees. Int J Syst Evol Microbiol 56:2937–2943

    CAS  PubMed  Google Scholar 

  • Geier G, Geider K (1993) Characterization and influence on virulence of the levansucrase gene from the fire blight pathogen Erwinia amylovora. Physiol Mol Plant Pathol 42:387–404

    CAS  Google Scholar 

  • Giorgi S, Scortichini M (2005) Molecular characterization of Erwinia amylovora strains from different host plants through RFLP analysis and sequencing of hrpN and dspA/E genes. Plant Pathol 54:789–798

    CAS  Google Scholar 

  • Griffith CS, Sutton TB, Peterson PD (2003) Fire blight: the foundation of phytobacteriology. APS Press, St. Paul MN, p 144

    Google Scholar 

  • Gross M, Geier G, Rudolph K, Geider K (1992) Levan and levansucrase synthesized by the fire blight pathogen Erwinia amylovora. Physiol Mol Plant Pathol 40:371–381

    CAS  Google Scholar 

  • Hacker J, Blum-Oehler G, Muhldorfer I, Tschape H (1997) Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23:1089–1097

    CAS  PubMed  Google Scholar 

  • He SY, Nomura K, Whittam TS (2004) Type III protein secretion mechanism in mammalian and plant pathogens. Biochem Biophys Acta 1694:181–206

    CAS  PubMed  Google Scholar 

  • Hildebrand M, Aldridge P, Geider K (2006) Characterization of hns genes from Erwinia amylovora. Mol Genet Genomics 275:310–319

    CAS  PubMed  Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    CAS  PubMed  Google Scholar 

  • Jensen PJ, Halbrendt N, Fazio G, Makalowska I, Altman N, Praul C, Maximova SN, Ngugi HK, Crassweller RM, Travis JW, McNellis TW (2012) Rootstock-regulated gene expression patterns associated with fire blight resistance in apple. BMC Genom 9:13

    Google Scholar 

  • Jin Q, Hu W, Brown I, McGhee G, Hart P, Jones AL, He SY (2001) Visualization of secreted Hrp and Avr proteins along the Hrp pilus during type III secretion in Erwinia amylovora and Pseudomonas syringae. Mol Microbiol 40:1129–1139

    CAS  PubMed  Google Scholar 

  • Jin P, Wood MD, Wu Y, Xie Z, Katagiri F (2003) Cleavage of the Pseudomonas syringae type III effector AvrRpt2 requires a host factor(s) common among eukaryotes and is important for AvrRpt2 localization in the host cell. Plant Physiol 133:1072–1082

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier EA (2012) Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    CAS  PubMed  Google Scholar 

  • Jock S, Geider K (2004) Molecular differentiation of Erwinia amylovora strains from North America and of two Asian pear pathogens by analyses of PFGE patterns and hrpN genes. Environ Microbiol 6:480–490

    CAS  PubMed  Google Scholar 

  • Jock S, Donat V, Lopez MM, Bazzi C, Geider K (2002) Following spread of fire blight in Western, Central and Southern Europe by molecular differentiation of Erwinia amylovora strains with PFGE analysis. Environ Microbiol 4:106–114

    PubMed  Google Scholar 

  • Kado CI (2000) Plant bacteriology. APS Press, St Paul

    Google Scholar 

  • Kelm O, Kiecker C, Geider K, Bernhard F (1997) Interaction of the regulator proteins RcsA and RcsB with the promoter of the operon for amylovoran biosynthesis in Erwinia amylovora. Mol Gen Genet 256:72–83

    CAS  PubMed  Google Scholar 

  • Khan MA, Zhao YF, Korban SS (2012) Molecular mechanisms of pathogenesis and resistance to the bacterial pathogen Erwinia amylovora, causal agent of fire blight disease in Rosaceae. Plant Mol Biol Rep 30:247–260

    CAS  Google Scholar 

  • Kim JF, Beer SV (1998) HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J Bacterial 180:5203–5210

    CAS  Google Scholar 

  • Kim JF, Beer SV (2001) Molecular basis of the Hrp pathogenicity of the fire blight pathogen Erwinia amylovora: a type III protein secretion system encoded in a pathogenicity island. Plant Pathol J 17:77–82

    Google Scholar 

  • Kim JF, Wei ZM, Beer SV (1997) The hrpA and hrpC operons of Erwinia amylovora encode components of a type III pathway that secrets harpin. J Bacteriol 179:1690–1697

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim WS, Gardan L, Rhim SL, Geider K (1999) Erwinia pyrifoliae sp. nov., a novel pathogen that affects Asian pear trees (Pyrus pyrifolia Nakai). Int J Syst Bacteriol 49:899–906

    CAS  PubMed  Google Scholar 

  • Kim WS, Hildebrand M, Jock S, Geider K (2001) Molecular comparison of pathogenic bacteria from pear trees in Japan and the fire blight pathogen Erwinia amylovora. Microbiology 147:2951–2959

    CAS  PubMed  Google Scholar 

  • Koczan JM, McGrath MJ, Zhao YF, Sundin GW (2009) Contribution of Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: implications in pathogenicity. Phytopathology 99:1237–1244

    CAS  PubMed  Google Scholar 

  • Kube M, Migdoll AM, Müller I, Kuhl H, Beck A, Reinhardt R, Geider K (2008) The genome of Erwinia tasmaniensis strain Et1/99, a non-pathogenic bacterium in the genus Erwinia. Environ Microbiol 10:2211–2222

    CAS  PubMed  Google Scholar 

  • Kube M, Migdoli AM, Gehring I, Heltmann K, Mayer Y, Kuhl H, Knaust F, Geider K, Reinhardt R (2010) Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae. BMC Genom 11:393

    Google Scholar 

  • Kunkel BN, Bent AF, Dahlbeck D, Innes RW, Staskawicz BJ (1993) RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Plant Cell 5:865875

    Google Scholar 

  • Langille MG, Hsiao WW, Brinkman FS (2010) Detecting genomic islands using bioinformatics approaches. Nat Rev Microbiol 8:373–382

    CAS  PubMed  Google Scholar 

  • Langlotz C, Schollmeyer M, Coplin DL, Nimtz M, Geider K (2011) Biosynthesis of the repeating units of the exopolysaccharides amylovoran from Erwinia amylovora and stewartan from Pantoea stewartii. Physiol Mol Plant Pathol 75:163–169

    CAS  Google Scholar 

  • Lee SA, Ngugi HK, Halbrendt NO, O’Keefe G, Lehman B, Travis JW, Sinn JP, McNellis TW (2010) Virulence characteristics accounting for fire blight disease severity in apple trees and seedlings. Phytopathology 100:539–550

    CAS  PubMed  Google Scholar 

  • Lelliott RA, Dickey RS (1984) Genus VII, Erwinia. In: Krieg NR (ed) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 469–476

    Google Scholar 

  • Li WT, Ancona V, Zhao YF (2014) Co-regulation of polysaccharide production, motility, and expression of type III secretion genes by EnvZ/OmpR and GrrS/GrrA systems in Erwinia amylovora. Mol Genet Genom 1:63–75

    Google Scholar 

  • Lindgren PB, Peet RC, Panopoulos NJ (1986) Gene cluster of Pseudomonas syringae pv. phaseolicola controls pathogenicity of bean plants and hypersensitivity on nonhost plants. J Bacteriol 168:512–522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu R, Ochman H (2007) Stepwise formation of the bacterial flagellar system. Proc Natl Acad Sci USA 104:7116–7121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Llop P, Donat V, Rodríguez M, Cabrefiga J, Ruz L, Jalomo JL, Montesinos E, López MM (2006) An indigenous virulent strain of Erwinia amylovora lacking the ubiquitous plasmid pEA29. Phytopathology 96:900–907

    CAS  PubMed  Google Scholar 

  • Llop P, Cabrefiga J, Smits THM, Dreo T, Barbe S, Pulawska J, Bultreys A, Blom J, Duffy B, Montesinos E, López MM (2011) Erwinia amylovora novel plasmid pEI70: complete sequence, biogeography, and role in aggressiveness in the fire blight phytopathogen. PLoS One 6:e28651

    CAS  PubMed Central  PubMed  Google Scholar 

  • Llop P, Barbé S, López MM (2012) Functions and origin of plasmids in Erwinia species that are pathogenic to or epiphytically associated with pome fruit trees. Trees Struct Funct 26:31–46

    Google Scholar 

  • Longstroth M (2000) Fire blight epidemic strikes SW Michigan. Fruit Grow News July, pp 17–18

    Google Scholar 

  • López MM, Roselló M, Llop P, Ferrer S, Christen R, Gardan L (2011) Erwinia piriflorinigrans sp. nov., a novel pathogen that causes necrosis of pear blossoms. Int J Syst Evol Microbiol 61:561–567

    PubMed  Google Scholar 

  • Mackey D, Holt BF, Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:743–754

    CAS  PubMed  Google Scholar 

  • Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL (2003) Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112:379389

    Google Scholar 

  • Malnoy M, Martens S, Norelli JL, Barny MA, Sundin GW, Smits TH, Duffy B (2012) Fire blight: applied genomic insights of the pathogen and host. Annu Rev Phytopathol 50:475–494

    CAS  PubMed  Google Scholar 

  • Mann RA, Blom J, Buhlmann A, Plummer KM, Beer SV, Luck JE, Goesmann A, Frey JE, Rodoni BC, Duffy B, Smits THM (2012) Comparative analysis of the Hrp pathogenicity island of Rubus- and Spiraeoideae infecting Erwinia amylovora strains identifies the IT region as a remnant of an integrative conjugative element. Gene 504:6–12

    CAS  PubMed  Google Scholar 

  • Mann RA, Smits THM, Buhlmann A, Blom J, Goesmann A, Frey JE, Plummer KM, Beer SV, Luck JE, Duffy B, Rodoni BC (2013) Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core. PLoS One 8:e55644

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Machado MA, Toth I, Salmond G, Foster GD (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629

    PubMed  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2010) Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463:568–571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuura T, Mizuno A, Tsukamoto T, Shimizu Y, Saito N, Sato S, Kikuchi S, Uzuki T, Azegami K, Sawada H (2012) Erwinia uzenensis sp. nov., a novel pathogen that affects European pear trees (Pyrus communis L.). Int J Syst Evol Microbiol 62:1799–1803

    CAS  PubMed  Google Scholar 

  • McGhee GC, Jones AL (2000) Complete nucleotide sequence of ubiquitous plasmid pEA29 from Erwinia amylovora strain Ea88: gene organization and intraspecies variation. Appl Environ Microbiol 66:4897–4907

    CAS  PubMed Central  PubMed  Google Scholar 

  • McGhee GC, Sundin GW (2008) Thiamin biosynthesis and its influence on exopolysaccharide production: A new component of the virulence identified on Erwinia amylovora plasmid pEA29. Acta Hortic 793:271–277

    CAS  Google Scholar 

  • McGhee GC, Sundin GW (2012) Erwinia amylovora CRISPR elements provide new tools for evaluating strain diversity and for microbial source tracking. PLoS One 7:e41706

    CAS  PubMed Central  PubMed  Google Scholar 

  • McGhee GC, Schnabel EL, Maxson-Stein K, Jones B, Stromberg VK, Lacy GH, Jones AL (2002) Relatedness of chromosomal and plasmid DNAs of Erwinia pyrifoliae and Erwinia amylovora. Appl Environ Microbiol 68:6182–6192

    CAS  PubMed Central  PubMed  Google Scholar 

  • McGhee GC, Guasco J, Bellomo LM, Blumer-Schuette SE, Shane WW, Irish-Brown A, Sundin GW (2011) Genetic analysis of streptomycin-resistant (Sm(R)) strains of Erwinia amylovora suggests that dissemination of two genotypes is responsible for the current distribution of SmR E. amylovora in Michigan. Phytopathology 101:182–191

    PubMed  Google Scholar 

  • McManus PS, Jones AL (1995) Genetic fingerprinting of Erwinia amylovora strains isolated from tree-fruit crops and Rubus spp. Phytopathology 85:1547–1553

    CAS  Google Scholar 

  • McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Annu Rev Phytopathol 40:443–465

    CAS  PubMed  Google Scholar 

  • McNally RR, Toth IK, Cock PJA, Pritchard L, Hedley PE, Zhao YF, Sundin GW (2012) Genetic characterization of the HrpL regulon of the fire blight pathogen Erwinia amylovora reveals novel virulence factors. Mol Plant Pathol 13:160–173

    CAS  PubMed  Google Scholar 

  • Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594

    CAS  PubMed  Google Scholar 

  • Meng XD, Bonasera JM, Kim JF, Nissinen RM, Beer SV (2006) Apple proteins that interact with DspA/E, a pathogenicity effector of Erwinia amylovora, the fire blight pathogen. Mol Plant Microbe Interact 19:53–61

    CAS  PubMed  Google Scholar 

  • Mergaert J, Hauben L, Cnockaert MC, Swings J (1999) Reclassification of non-pigmented Erwinia herbicola strains from trees as Erwinia billingiae sp. nov. Int J Syst Bacteriol 49:377–383

    PubMed  Google Scholar 

  • Mizuno A, Sato S, Kawai A, Nishiyama K (2000) Taxonomic position of the causal pathogen of bacterial shoot blight of pear. J Gen Plant Pathol 66:48–58

    Google Scholar 

  • Mizuno A, Tsukamoto T, Shimizu Y, Ooya H, Matsuura T, Saito N, Sato S, Kikuchi S, Uzuki T, Azegami K (2010) Occurrence of bacterial black shoot disease of European pear in Yamagata Prefecture. J Gen Plant Pathol 76:43–51

    Google Scholar 

  • Momol MT, Momol EA, Lamboy WF, Norelli JL, Beer SV, Aldwinckle HS (1997) Characterization of Erwinia amylovora strains using random amplified polymorphic DNA fragments (RAPDs). J Appl Microbiol 82:389–398

    CAS  PubMed  Google Scholar 

  • Nakka S, Qi M, Zhao YF (2010a) The PmrAB system in Erwinia amylovora renders the pathogen more susceptible to polymyxin B and more resistance to excess iron. Res Microbiol 161:153–157

    CAS  PubMed  Google Scholar 

  • Nakka S, Qi M, Zhao YF (2010b) The Erwinia amylovora PhoPQ system is involved in resistance to antimicrobial peptide and suppresses gene expression of two novel type III secretion systems. Microbiol Res 165:665–673

    CAS  PubMed  Google Scholar 

  • Nimtz M, Mort A, Domke T, Wray V, Zhang Y, Qiu F, Coplin D, Geider K (1996) Structure of amylovoran, the capsular exopolysaccharide from the fire blight pathogen Erwinia amylovora. Carbohydr Res 287:59–76

    CAS  PubMed  Google Scholar 

  • Nissinen RM, Ytterberg AJ, Bogdanove AJ, van Wijk K, Beer SV (2007) Analyses of the secretomes of Erwinia amylovora and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol Plant Pathol 8:55–67

    CAS  PubMed  Google Scholar 

  • Norelli JL, Aldwinckle HS, Beer SV (1984) Differential host × pathogen interactions among cultivars of apple and strains of Erwinia amylovora. Phytopathology 74:136–139

    Google Scholar 

  • Norelli JL, Aldwinckle HS, Beer SV (1986) Differential susceptibility of Malus spp. cultivars robusta 5, Novole, and Ottawa 523 to Erwinia amylovora. Plant Dis 70:1017–1019

    Google Scholar 

  • Norelli JL, Jones AL, Aldwinckle HS (2003) Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple. Plant Dis 87:756–765

    Google Scholar 

  • Oh CS, Beer SV (2005) Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol Lett 253:185–192

    CAS  PubMed  Google Scholar 

  • Oh CS, Beer SV (2007) AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effect of HrpN in Arabidopsis. Plant Physiol 145:426–436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oh CS, Kim JF, Beer SV (2005) The Hrp pathogenicity island of Erwinia amylovora and identification of three novel genes required for systemic infection. Mol Plant Pathol 6:125–138

    CAS  PubMed  Google Scholar 

  • Oh CS, Martin GB, Beer SV (2007) DspA/E, a type III effector of Erwinia amylovora, is required for early rapid growth in Nicotiana benthamiana and causes NbSGT1-dependent cell death. Mol Plant Pathol 8:255–265

    CAS  PubMed  Google Scholar 

  • Oh CS, Carpenter CD, Hayes ML, Beer SV (2010) Secretion and translocation signals and DspB/F-binding domains in the type III effector DspA/E of Erwinia amylovora. Microbiology 156:1211–1220

    CAS  PubMed  Google Scholar 

  • Ordax M, Marco-Noales E, López MM, Biosca EG (2010) Exopolysaccharides favor the survival of Erwinia amylovora under copper stress through different strategies. Res Microbiol 161:549–555

    CAS  PubMed  Google Scholar 

  • Palacio-Bielsa A, Rosello M, Llop P, Lopez MM (2012) Erwinia spp. from pome fruit trees: similarities and differences among pathogenic and non-pathogenic species. Trees 26:13–29

    Google Scholar 

  • Park DH, Thapa SP, Choi BS, Kim WS, Hur JH, Cho JM, Lim J, Choi I, Lim CK (2011) Complete genome sequence of Japanese Erwinia strain Ejp617, a bacterial shoot blight pathogen of pear. J Bacteriol 193:586–587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perino C, Gaudriault S, Vian B, Barny MA (1999) Visualization of harpin secretion in planta during infection of apple seedlings by Erwinia amylovora. Cell Microbiol 1:131–141

    CAS  PubMed  Google Scholar 

  • Pierce NB (1902) Pear blight in California. Science 16:193–194

    Google Scholar 

  • Powney R, Smits THM, Sawbridge T, Frey B, Blom J, Frey JE, Plummer KM, Beer SV, Luck J, Duffy B, Rodoni B (2011) Genome sequence of an Erwinia amylovora strain with pathogenicity restricted to Rubus plants. J Bacteriol 193:785–786

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pristovsek P, Sengupta K, Lohr F, Schafer B, von Trebra MW, Ruterjans H, Bernhard F (2003) Structural analysis of the DNA-binding domain of the Erwinia amylovora RcsB protein and its interaction with the RcsAB box. J Biol Chem 278:17752–17759

    CAS  PubMed  Google Scholar 

  • Pronk LM, Sanderson KE (2001) Intervening sequences in rrl genes and fragmentation of 23S rRNA in genera of the family Enterobacteriaceae. J Bacteriol 183:5782–5787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qi M, Sun F, Caetano-Anolles G, Zhao YF (2010) Comparative genomic and phylogenetic analyses reveal the evolution of core two-component signal transduction systems in enterobacteria. J Mol Evol 70:167–180

    CAS  PubMed  Google Scholar 

  • Reboutier D, Frankart C, Briand J, Biligui B, Laroche S, Rona JP, Barny MA, Bouteau F (2007) The HrpNea harpin from Erwinia amylovora triggers differential responses on the nonhost Arabidopsis thaliana cells and on the host apple cells. Mol Plant Microbe Interact 20:94–100

    CAS  PubMed  Google Scholar 

  • Records AR (2011) The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant Microbe Interact 24:751–757

    CAS  PubMed  Google Scholar 

  • Rezzonico F, Smits THM, Duffy B (2011) Diversity, evolution, and functionality of clustered regularly interspaced short palindromic repeat (CRISPR) regions in the fire blight pathogen Erwinia amylovora. Appl Environ Microbiol 77:3819–3829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rezzonico F, Braun-Kiewnick A, Mann RA, Rodoni B, Goesmann A, Duffy B, Smits THM (2012) Lipopolysaccharide biosynthesis genes discriminate between Rubus- and Spiraeoideae-infective genotypes of Erwinia amylovora. Mol Plant Pathol 13:975–984

    CAS  PubMed  Google Scholar 

  • Rhim S-L, Volksch B, Gardan L, Paulin JP, Langlotz C, Kim WS, Geider K (1999) Erwinia pyrifoliae, an Erwinia species different from Erwinia amylovora, causes a necrotic disease of Asian pear trees. Plant Pathol 48:514–520

    CAS  Google Scholar 

  • Rico A, Ortiz-Barredo A, Ritter E, Murillo J (2004) Genetic characterization of Erwinia amylovora strains by amplified fragment length polymorphism. J Appl Microbiol 96:302–310

    CAS  PubMed  Google Scholar 

  • Rodoni BC, Merriman PR, McKirdy SJ, Wittwer G (2006) Costs associated with fire blight incursion management and predicted costs of future incursions. Acta Hortic 704:55–61

    Google Scholar 

  • Rosello M, Penalver J, Llop P, Gorris MT, Chartier R, Garcıa F, Monton C, Cambra M, Lopez MM (2006) Identification of an Erwinia sp. different from Erwinia amylovora and responsible for necrosis on pear blossoms. Can J Plant Pathol 28:30–41

    CAS  Google Scholar 

  • Russo NL, Burr TJ, Breth DI, Aldwinckle HS (2008) Isolation of streptomycin-resistant isolates of Erwinia amylovora in New York. Plant Dis 92:714–718

    CAS  Google Scholar 

  • Sarkar SF, Guttman DS (2004) Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl Environ Microbiol 70:999–2012

    Google Scholar 

  • Sarowar S, Guerra R, Wang D, Zheng DM, Korban SS, Zhao YF (2011a) Transcriptome analysis of apple blossom after challenging with the fire blight pathogen Erwinia amylovoran wild type and mutant strains. Acta Hortic 896:245–251

    CAS  Google Scholar 

  • Sarowar S, Zhao YF, Soria-Guerra RE, Ali S, Zheng D, Wang DP, Korban SS (2011b) Expression profiles of differentially regulated genes during the early stages of apple flower infection with Erwinia amylovora. J Exp Bot 62:4851–4861

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schroth MN, Thomson SV, Hildebrand DC (1974) Epidemiology and control of fire blight. Annu Rev Phytopathol 12:389–412

    Google Scholar 

  • Sebaihia M, Bocsanczy AM, Biehl BS, Quail MA, Perna NT, Glasner JD, DeClerck GA, Cartinhour S, Schneider DJ, Bentley SD, Parkhill J, Beer SV (2010) Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946. J Bacteriol 192:2020–2021

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seth-Smith H, Croucher NJ (2009) Genome watch: breaking the ICE. Nat Rev Microbiol 7:328–329

    CAS  PubMed  Google Scholar 

  • Shrestha R, Koo JH, Park DH, Hwang I, Hur JH, Lim CK (2003) Erwinia pyrifoliae, a causal endemic pathogen of shoot blight of Asian pear tree in Korea. Plant Pathol J 19:294–300

    Google Scholar 

  • Sinn JP, Oh CS, Jensen PJ, Carpenter SC, Beer SV, McNellis TW (2008) The C-terminal half of the HrpN virulence protein of the fire blight pathogen Erwinia amylovora is essential for its secretion and for its virulence and avirulence activities. Mol Plant Microbe Interact 21:1387–1397

    CAS  PubMed  Google Scholar 

  • Smits THM, Duffy B (2011) Genomics of iron acquisition in the plant pathogen Erwinia amylovora: insights in the biosynthetic pathway of the siderophore desferrioxamine E. Arch Microbiol 193:693–699

    CAS  PubMed  Google Scholar 

  • Smits THM, Jaenicke S, Rezzonico F, Kamber T, Goesmann A, Frey JE, Duffy B (2010a) Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163(T) and comparative genomic insights into plant pathogenicity. BMC Genom 11:2

    Google Scholar 

  • Smits THM, Rezzonico F, Kamber T, Blom J, Goesmann A, Frey JE, Duffy B (2010b) Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Mol Plant Microbe Interact 23:384–393

    CAS  PubMed  Google Scholar 

  • Smits THM, Rezzonico F, Duffy B (2011) Evolutionary insights from Erwinia amylovora genomics. J Biotechnol 155:34–39

    CAS  PubMed  Google Scholar 

  • Smits THM, Rezzonico F, López MM, Blom J, Goesmann A, Frey JE, Duffy B (2013) Phylogenetic position and virulence apparatus of the pear flower necrosis pathogen Erwinia piriflorinigrans CFBP 5888(T) as assessed by comparative genomics. Syst Appl Microbiol 36:449–456

    CAS  PubMed  Google Scholar 

  • Starr MP, Chatterjee AK (1972) The genus Erwinia: Enterobacteria pathogenic to plants and animals. Annul Rev Microbiol 26:389–426

    CAS  Google Scholar 

  • Starr MP, Cardona C, Folsom D (1951) Bacterial fire blight of raspberry. Phytopathology 41:915–919

    Google Scholar 

  • Steinberger EM, Beer SV (1988) Creation and complementation of pathogenicity mutants of Erwinia amylovora. Mol Plant Microbe Interact 1:135–144

    Google Scholar 

  • Tanii A, Tamura O, Ozaki M (1981) Causal pathogen of fire blightlike symptoms of pear. Ann Phytopath Soc Jpn 47:102

    Google Scholar 

  • Thapa SP, Park DH, Kim WS, Choi BS, Lim JS, Choi IY, Hur JH, Lim CK (2013) Comparative genomics of Japanese Erwinia pyrifoliae strain Ejp617 with closely related erwinias. Genome 56:83–90

    CAS  PubMed  Google Scholar 

  • Thoelen M, Noben JP, Robben J, Valcke R, Deckers T (2008) Comparative proteome analysis of four Erwinia amylovora strains with different pathogenicity. Acta Hort 793:183–185

    CAS  Google Scholar 

  • Thomson SV (1986) The role of the stigma in fire blight infections. Phytopathology 76:476–482

    Google Scholar 

  • Toth IK, Pritchard L, Birch PRJ (2006) Comparative genomics reveals what makes an enterobacterial plant pathogen. Ann Rev Phytopathol 44:305–306

    CAS  Google Scholar 

  • Triplett L, Zhao YF, Sundin GW (2006) Genetic differences among blight-causing Erwinia species with differing host specificities identified by suppression subtractive hybridization. Appl Environ Microbiol 72:7359–7364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Triplett LR, Melotto M, Sundin GW (2009) Functional analysis of the N terminus of the Erwinia amylovora secreted effector DspA/E reveals features required for secretion, translocation, and binding to the chaperone DspB/F. Mol Plant Microbe Interact 22:1282–1292

    CAS  PubMed  Google Scholar 

  • Triplett LR, Wedemeyer WJ, Sundin GW (2010) Homology-based modeling of the Erwinia amylovora type III secretion chaperone DspF used to identify amino acids required for virulence and interaction with the effector DspE. Res Microbiol 161:613–618

    CAS  PubMed  Google Scholar 

  • van der Zwet T (1995) First report of Erwinia amylovora on new host species in the genus Sorbus. Plant Dis 79:424

    Google Scholar 

  • van der Zwet T (2004) Present worldwide distribution of fire blight and closely related diseases. Acta Hort 704:35

    Google Scholar 

  • van der Zwet T, Keil HL (1979) Fire blight: a bacterial disease of rosaceous species. United States Department of Agriculture Handbook 510

    Google Scholar 

  • van der Zwet T, Wells JM (1993) Application of fatty acid class analysis for the detection and identification of Erwinia amylovora. Acta Hortc 388:233

    Google Scholar 

  • van der Zwet T, Orolaza-Halbrendt N, Zeller W (2012) Fire blight: history, biology, and management. APS Press, St Paul, MN 420 pp

    Google Scholar 

  • Vanneste JL (2000) Fire blight: the disease and its causative agent, Erwinia amylovora. CABI Publishing, New York

    Google Scholar 

  • Vanneste JL, Paulin JP, Expert D (1990) Bacteriophage MU as a genetic tool to study Erwinia amylovora pathogenicity and hypersensitive reaction on tobacco. J Bacteriol 172:932–941

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vanneste JL, Lex S, Vermeulen M, Berger F (2002) Isolation of Erwinia amylovora from blighted plums (Prunus domestica) and potato roses (Rosa rugosa). Acta Hortc 590:89–94

    Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Google Scholar 

  • Venisse JS, Gullner G, Brisset MN (2001) Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora. Plant Physiol 125:2164–2172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Venisse JS, Barny MA, Paulin JP, Brisset MN (2003) Involvement of three pathogenicity factors of Erwinia amylovora in the oxidative stress associated with compatible interaction in pear. FEBS Lett 537:198–202

    CAS  PubMed  Google Scholar 

  • Vogt I, Wöhner T, Richter K, Flachowsky H, Sundin GW, Wensing A, Savory EA, Geider K, Day B, Hanke MV, Peil A (2013) Gene-for-gene relationship in the host-pathogen system Malus × robusta 5-Erwinia amylovora. New Phytol 197:1262–1275

    CAS  PubMed  Google Scholar 

  • Wang L, Beer SV (2006) Application of signature-tagged mutagenesis to the study of virulence of Erwinia amylovora. FEMS Microbiol Lett 265:164–171

    CAS  PubMed  Google Scholar 

  • Wang DP, Korban SS, Zhao YF (2009) The Rcs phosphorelay system is essential for pathogenicity in Erwinia amylovora. Mol Plant Pathol 10:277–290

    CAS  PubMed  Google Scholar 

  • Wang DP, Korban SS, Zhao YF (2010a) Molecular signature of differential virulence in natural isolates of Erwinia amylovora. Phytopathology 100:192–198

    CAS  PubMed  Google Scholar 

  • Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y, Ning ZB, Zeng R, Xiong Y, Guan KL, Zhao S, Zhao GP (2010b) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327:1004–1007

    CAS  PubMed  Google Scholar 

  • Wang DP, Calla B, Vimolmangkang S, Wu X, Korban SS, Huber SC, Clough SJ, Zhao YF (2011a) The orphan gene ybjN conveys pleiotropic effects on multicellular behavior and survival of Escherichia coli. PLoS One 6:e25293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang DP, Korban SS, Pusey L, Zhao YF (2011b) Characterization of the RcsC sensor kinase from Erwinia amylovora and other enterobacteria. Phytopathology 101:710–717

    CAS  PubMed  Google Scholar 

  • Wang DP, Korban SS, Sundin GW, Clough S, Toth I, Zhao YF (2011c) Regulatory genes and environmental regulation of amylovoran biosynthesis in Erwinia amylovora. Acta Hort 896:195–202

    Google Scholar 

  • Wang DP, Qi MS, Calla B, Korban SS, Clough SJ, Cock P, Sundin GW, Toth I, Zhao YF (2012a) Genome-wide identification of genes regulated by the Rcs phosphorelay system in Erwinia amylovora. Mol Plant Microbe Interact 25:6–17

    CAS  PubMed  Google Scholar 

  • Wang DP, Korban SS, Pusey L, Zhao YF (2012b) AmyR is a novel negative regulator of amylovoran production in Erwinia amylovora. PLoS One 7:e45038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Yang F, von Bodman SB (2012c) The genetic and structural basis of two distinct terminal side branch residues in stewartan and amylovoran exopolysaccharides and their potential role in host adaptation. Mol Microbiol 83:195–207

    CAS  PubMed  Google Scholar 

  • Wehland M, Bernhard F (2000) The RcsAB box. Characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria. J Bio Chem 275:7013–7020

    CAS  Google Scholar 

  • Wehland M, Kiecker C, Coplin DL, Kelm O, Saenger W, Bernhard F (1999) Identification of an RcsA/RcsB recognition motif in the promoters of exopolysaccharide biosynthetic operons from Erwinia amylovora and Pantoea stewartii subspecies stewartii. J Biol Chem 274:3300–3307

    CAS  PubMed  Google Scholar 

  • Wei ZM, Beer SV (1993) Harpin of Erwinia amylovora functions in secretions of harpin and is a member of a new protein family. J Bacteriol 175:7958–7967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei Z, Beer SV (1995) HrpL activates Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of sigma factors. J Bacteriol 177:6201–6210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85–88

    CAS  PubMed  Google Scholar 

  • Wei Z, Kim JF, Beer SV (2000) Regulation of hrp genes and type III protein secretion in Erwinia amylovora by HrpX/HrpY, a novel two-component system, and HrpS. Mol Plant Microbe Interact 11:1251–1262

    Google Scholar 

  • Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    CAS  PubMed  Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2012) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408

    PubMed  Google Scholar 

  • Wu X, Vellaichamy A, Wang D, Zamdborg L, Kelleher NL, Huber SC, Zhao YF (2013) Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics. J Proteomics 79:60–71

    CAS  PubMed  Google Scholar 

  • Yang F, Korban SS, Pusey L, Elofsson M, Sundin GW, Zhao YF (2014) Small molecule inhibitors suppress expression of both type III secretion and amylovoran biosynthesis genes in Erwinia amylovora. Mol Plant Pathol 15:44–57

    CAS  PubMed  Google Scholar 

  • Zeng Q, McNally RR, Sundin GW (2013) Global small RNA chaperone Hfq and regulated small RNAs control virulence in the fire blight pathogen Erwinia amylovora. J Bacteriol 195:1706–1717

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Geider K (1997) Differentiation of Erwinia amylovora strains by pulsed-field gel electrophoresis. Appl Environ Microbiol 63:4421–4426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Geider K (1999) Molecular analysis of the rlsA gene regulating levan production by the fire blight pathogen Erwinia amylovora. Phys Mol Plant Pathol 54:187–201

    CAS  Google Scholar 

  • Zhang Y, Bak DD, Heidi H, Geider K (1999) Molecular characterization of a protease secreted by Erwinia amylovora. J Mol Biol 289:1239–1251

    CAS  PubMed  Google Scholar 

  • Zhang JM, Sprung R, Pei JM, Tan XH, Kim S, Zhu H, Liu CF, Grishin NV, Zhao YM (2009) Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Prot 8:215–225

    CAS  Google Scholar 

  • Zhao YF, Qi M (2011) Comparative genomics of Erwinia amylovora and related Erwinia Species-What do we learn? Genes 2:627–639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao YF, Blumer SE, Sundin GW (2005) Identification of Erwinia amylovora genes induced during infection of immature pear tissue. J Bacteriol 187:8088–8103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao YF, He SY, Sundin GW (2006) The Erwinia amylovora avrRpt2 EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in Pseudomonas syringae. Mol Plant Microbe Interact 19:644–654

    CAS  PubMed  Google Scholar 

  • Zhao YF, Sundin GW, Wang D (2009a) Construction and analysis of pathogenicity island deletion mutants of Erwinia amylovora. Can J Microbiol 55:457–464

    CAS  PubMed  Google Scholar 

  • Zhao YF, Wang D, Nakka S, Sundin GW, Korban SS (2009b) Systems level analysis of two-component signal transduction systems in Erwinia amylovora: role in virulence, regulation of amylovoran biosynthesis and swarming motility. BMC Genom 10:245

    Google Scholar 

  • Zhao YF, Qi M, Wang D (2011) Evolution and function of flagellar and non-flagellar type III secretion systems in Erwinia amylovora. Acta Hort 896:177–184

    CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Agriculture and Food Research Initiative Competitive Grants Program Grant no. 2010-65110-20497 from the USDA National Institute of Food and Agriculture (Microbial Functional Genomics Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youfu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, Y. (2014). Genomics of Erwinia amylovora and Related Erwinia Species Associated with Pome Fruit Trees. In: Gross, D., Lichens-Park, A., Kole, C. (eds) Genomics of Plant-Associated Bacteria. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55378-3_1

Download citation

Publish with us

Policies and ethics