Skip to main content

Regeneration of the Living Pulp

  • Chapter
  • First Online:
The Dental Pulp

Abstract

The regeneration of a living dental pulp is the ideal outcome for the treatment of necrotic immature permanent teeth. A living pulp enables completion of root formation, protective dentin formation in response to caries progression, influx of immune cells that can defend the host against bacterial infection, and nociceptive responses that can alert the patient when harmful conditions are present. However, the clinical translation of procedures for dental pulp regeneration in necrotic teeth faces important challenges. Cell-based approaches for dental pulp tissue regeneration have intrinsic safety issues (e.g., ex vivo handling of cells) that must be overcome before they can be used routinely in dental practices. On the other hand, cell-free approaches have not consistently resulted in complete regeneration of dental pulps throughout the entire root canal in necrotic human teeth, and therefore their clinical outcomes are still rather unpredictable. In this chapter, we will discuss the regenerative potential of the dental pulp in light of the development of clinically relevant approaches for generation of new pulps in the treatment of necrotic teeth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bressan E, Ferroni L, Gardin C, Pinton P, Stellini E, Botticelli D, Sivolella S, Zavan B. Donor age-related biological properties of human dental pulp stem cells change in nanostructured scaffolds. PLoS One. 2012;7(11):e49146.

    PubMed Central  PubMed  Google Scholar 

  2. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97(25):13625–30.

    PubMed Central  PubMed  Google Scholar 

  3. Thesleff I, Aberg T. Molecular regulation of tooth development. Bone. 1999;25(1):123–5.

    PubMed  Google Scholar 

  4. Peters H, Balling R. Teeth. Where and how to make them. Trends Genet. 1999;15(2):59–65.

    PubMed  Google Scholar 

  5. Nosrat IV, Widenfalk J, Olson L, Nosrat CA. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol. 2001;238(1):120–32.

    PubMed  Google Scholar 

  6. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Gehron Robey P, Shi S. Stem cell properties of human dental pulp Stem cells. J Dent Res. 2002;81(8):531–5.

    PubMed  Google Scholar 

  7. Fitzgerald M, Chiego Jr DJ, Heys DR. Autoradiographic analysis of odontoblast replacement following pulp exposure in primate teeth. Arch Oral Biol. 1990;35:707–15.

    PubMed  Google Scholar 

  8. Yamamura T. Differentiation of pulpal cells and inductive influences of various matrices with reference to pulpal wound healing. J Dent Res. 1985;64:530–40.

    PubMed  Google Scholar 

  9. Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi SM, Pereira LV, Caplan AI, Cerruti HF. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT4 and other embryonic stem cell markers. Cells Tissues Organs. 2006;184(3–4):105–16.

    PubMed  Google Scholar 

  10. Estrela C, Alencar AH, Kitten GT, Vencio EF, Gava E. Mesenchymal stem cells in the dental tissue: perspectives for tissue regeneration. Braz Dent J. 2011;22(2):91–8.

    PubMed  Google Scholar 

  11. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100(10):5807–12.

    PubMed Central  PubMed  Google Scholar 

  12. Perry BC, Zhou D, Wu X, Yang FC, Byers MA, Chu TM, Hockema JJ, Woods EJ, Goebel WS. Collection, cryopreservation and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods. 2008;14(2):149–55.

    PubMed Central  PubMed  Google Scholar 

  13. Casagrande L, Cordeiro MM, Nör SA, Nör JE. Dental pulp stem cells in regenerative dentistry. Odontology. 2011;99(1):1–7.

    PubMed  Google Scholar 

  14. Casagrande L, Demarco FF, Zhang Z, Araujo FB, Shi S, Nör JE. Dentin-derived BMP-2 and odontoblast differentiation. J Dent Res. 2010;89(6):603–8.

    PubMed  Google Scholar 

  15. Sakai VT, Zhang Z, Dong Z, Neiva KG, Machado MA, Shi S, Santos CF, Nör JE. SHED differentiate into functional odontoblasts and endothelium. J Dent Res. 2010;89:791–6.

    PubMed  Google Scholar 

  16. Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, Smith AJ, Nör JE. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod. 2008;34(8):962–9.

    PubMed  Google Scholar 

  17. Bento LW, Zhang Z, Imai A, Nör F, Dong Z, Shi S, Araujo FB, Nör JE. Endothelial differentiation of SHED requires MEK1/ERK signaling. J Dent Res. 2013;92(1):51–7.

    PubMed Central  PubMed  Google Scholar 

  18. Atari M, Gil-Racio C, Fabregat M, Garcia-Fernandez D, Barajas M, Carrasco MA, Jung HS, Alfaro FH, Prosper F, Ferres-Padro E, Giner L. Dental pulp of the third molar: a new source of pluripotent-like stem cells. J Cell Sci. 2012;125:3343–56.

    PubMed  Google Scholar 

  19. Alongi DJ, Yamaza T, Song Y, Fouad AF, Romberg EE, Shi S, Tuan RS, Huang GT. Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen Med. 2010;5(4):617–31.

    PubMed Central  PubMed  Google Scholar 

  20. Wang Z, Pan J, Wright JT, Bencharit S, Zhang S, Everett ET, Teixeira FB, Preisser JS. Putative stem cells in human dental pulp with irreversible pulpitis: an exploratory study. J Endod. 2010;36(5):820–5.

    PubMed Central  PubMed  Google Scholar 

  21. Folkman J, Shing Y. Angiogenesis. J Biol Chem. 1992;267(16):10931–4.

    PubMed  Google Scholar 

  22. Love RM, Jenkinson HF. Invasion of dentinal tubules by oral bacterial. Crit Rev Oral Biol Med. 2002;13(2):171–83.

    PubMed  Google Scholar 

  23. Nair PN. Pathogenesis of apical periodontitis and the causes of endodontic failures. Crit Rev Oral Biol Med. 2004;15(6):348–81.

    PubMed  Google Scholar 

  24. Hahn CL, Liewehr FR. Relationships between caries bacteria, host responses and clinical signs and symptoms of pulpitis. J Endod. 2007;33:213–9.

    PubMed  Google Scholar 

  25. Zhong S, Zhang S, Bair E, Nares S, Khan AA. Differential expression of microRNAs in normal and inflamed human pulps. J Endod. 2012;38(6):746–52.

    PubMed  Google Scholar 

  26. Smith AJ, Smith JG, Shelton RM, Cooper PR. Harnessing the natural regenerative potential of the dental pulp. Dent Clin North Am. 2012;56(3):589–601.

    PubMed  Google Scholar 

  27. Soden RI, Botero TM, Hanks CT, Nör JE. Angiogenic signaling triggered by cariogenic bacteria in pulp cells. J Dent Res. 2009;88(9):835–40.

    PubMed  Google Scholar 

  28. Botero TM, Mantellini MG, Song W, Hanks CT, Nör JE. Effect of lipopolysaccharides on vascular endothelial growth factor expression in mouse pulp cells and macrophages. Eur J Oral Sci. 2003;111:28–234.

    Google Scholar 

  29. Botero TM, Shelburne CE, Holland GR, Hanks CT, Nör JE. TLR4 mediates LPS-induced VEGF expression in odontoblasts. J Endod. 2006;32:951–5.

    PubMed  Google Scholar 

  30. Botero TM, Son JS, Vodopyanov D, Hasegawa M, Shelburne CE, Nör JE. MAPK signaling is required for LPS-induced VEGF in pulp stem cells. J Dent Res. 2010;89(3):264–9.

    PubMed  Google Scholar 

  31. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219:983–5.

    PubMed  Google Scholar 

  32. Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF. Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis. 2008;11(2):109–19.

    PubMed Central  PubMed  Google Scholar 

  33. Heyeraas KJ, Berggreen E. Interstitial fluid pressure in normal and inflamed pulp. Crit Rev Oral Biol Med. 1999;10:328–36.

    PubMed  Google Scholar 

  34. Heyeraas KJ, Kvinnsland I. Tissue pressure and blood flow in pulpal inflammation. Proc Finn Dent Soc. 1992;88 Suppl 1:393–401.

    PubMed  Google Scholar 

  35. Smith AJ, Lesot H. Induction and regulation of crown dentinogenesis—embryonic events as a template for dental tissue repair. Crit Rev Oral Biol Med. 2001;12(5):425–37.

    PubMed  Google Scholar 

  36. Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: biological strategies for repair and tissue engineering. Crit Rev Oral Biol Med. 2004;15(1):13–27.

    PubMed  Google Scholar 

  37. Smith AJ, Tobias RS, Plant CG, Browne RM, Lesot H, Ruch JV. In vivo morphogenetic activity of dentine matrix proteins. J Biol Buccale. 1990;18(2):123–9.

    PubMed  Google Scholar 

  38. Smith AJ, Tobias RS, Plant CG, Browne RM, Lesot H, Ruch JV. Morphogenetic proteins from dentine extracellular matrix and cell-matrix interactions. Biochem Soc Trans. 1991;19(2):187S.

    PubMed  Google Scholar 

  39. Roberts-Clark D, Smith AJ. Angiogenic growth factors in human dentine matrix. Arch Oral Biol. 2000;45(11):1013–6.

    PubMed  Google Scholar 

  40. Graham L, Cooper PR, Cassidy N, Nör JE, Sloan AJ, Smith AJ. The effect of calcium hydroxide on solubilisation of bio-active dentine matrix components. Biomaterials. 2006;27(14):2865–73.

    PubMed  Google Scholar 

  41. Tomson PL, Grover LM, Lumley PJ, Sloan AJ, Smith AJ, Cooper PR. Dissolution of bio-active dentine matrix components by mineral trioxide aggregate. J Dent. 2007;35(8):636–42.

    PubMed  Google Scholar 

  42. Zhang R, Cooper P, Smith G, Nör JE, Smith AJ. Angiogenic activity of dentin matrix components. J Endod. 2011;37(1):26–30.

    PubMed  Google Scholar 

  43. Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–29.

    PubMed Central  PubMed  Google Scholar 

  44. Edwards PC, Mason JM. Gene-enhanced tissue engineering for dental hard tissue regeneration: (2) dentin-pulp and periodontal regeneration. Head Face Med. 2006;2:16.

    PubMed Central  PubMed  Google Scholar 

  45. Friedlander LT, Cullinan MP, Love RM. Dental stem cells and their potential role in apexogenesis and apexification. Int Endod J. 2009;42:955–62.

    PubMed  Google Scholar 

  46. About I. Dentin regeneration in vitro: the pivotal role of supportive cells. Adv Dent Res. 2011;23(3):320–4.

    PubMed  Google Scholar 

  47. Hahn CL, Liewehr FR. Update on the adaptive immune response of the dental pulp. J Endod. 2007;33(7):773–81.

    PubMed  Google Scholar 

  48. Jiang Y, Russell TR, Schilder H, Graves DT.Endodontic pathogens stimulate monocyte chemoattractant protein-1 and interleukin-8 in mononuclear cells. J Endod. 1998;24(2):86–90.

    PubMed  Google Scholar 

  49. Karapanou V, Kempuraj D, Theoharides TC.Interleukin-8 is increased in gingival crevicular fluid from patients with acute pulpitis. J Endod. 2008;34(2):148–51.

    PubMed  Google Scholar 

  50. Huang GT, Potente AP, Kim JW, Chugal N, Zhang X. Increased interleukin-8 expression in inflamed human dental pulps. Oral Med Oral Pathol Oral Radiol Endod. 1999;88(2):214–20.

    Google Scholar 

  51. Park SH, Hsiao GY, Huang GT. Role of substance P and calcitonin gene related peptide in the regulation of interleukin-8 and monocyte chemotactic protein-1 expression in human dental pulp. Int Endod J. 2004;37(3):185–92.

    PubMed  Google Scholar 

  52. Avery JK, Cox CF, Chiego Jr DJ. Presence and location of adrenergic nerve endings in the dental pulps of mouse molars. Anat Rec. 1980;198(1):59–71.

    PubMed  Google Scholar 

  53. Wakisaka S. Neuropeptides in the dental pulp: distribution, origins and correlations. J Endod. 1990;16(2):67–9.

    PubMed  Google Scholar 

  54. Caviedes-Bucheli J, Camargo-Beltrán C, Gómez-la-Rotta AM, Moreno SC, Abello GC, González-Escobar JM. Expression of calcitonin gene related peptide (CGRP) in irreversible acute pulpitis. J Endod. 2004;30(4):201–4.

    PubMed  Google Scholar 

  55. Airaksinen MS, Saarma M. The GDNF family: signaling, biological functions and therapeutic value. Nat Rev Neurosci. 2002;3:383–94.

    PubMed  Google Scholar 

  56. Gale Z, Cooper PR, Scheven BA. Effects of glial cell line-derived neurotrophic factor on dental pulp cells. J Dent Res. 2011;90(10):1240–5.

    PubMed  Google Scholar 

  57. Davidson RM. Neural form of voltage-dependent sodium current in human cultured dental pulp cells. Arch Oral Biol. 1994;39(7):613–20.

    PubMed  Google Scholar 

  58. About I, Bottero MJ, de Denato P, Camps J, Franquin JC, Mitsiades TA. Human dentin production in vitro. Exp Cell Res. 2000;258:33–41.

    PubMed  Google Scholar 

  59. Goodis H, Saeki K. Identification of bradykinin, substance P and Neurokinin A in human dental pulp. J Endod. 1997;23(4):201–4.

    PubMed  Google Scholar 

  60. Casasco A, Calligaro A, Casasco M, Springall DR, Polak JM, Poggi P, Marchetti C. Peptidergic nerves in human dental pulp. Histochemistry. 1990;95:115–21.

    PubMed  Google Scholar 

  61. Caviedes-Bucheli J, Arenas N, Guiza O, Moncada NA, Moreno GC, Diaz E, Munoz HR. Calcitonin gene related peptide receptor expression in healthy and inflamed human pulp tissue. Int Endod J. 2005;38(10):712–7.

    PubMed  Google Scholar 

  62. Hargreaves KM, Swift JQ, Roszkowski MT, Bowles W, Garry MG, Jackson DL. Pharmacology of peripheral neuropeptide and inflammatory mediator release. Oral Surg Oral Med Oral Pathol. 1994;78(4):503–10.

    PubMed  Google Scholar 

  63. Patel T, Park SH, Lin LM, Chiapelli F, Huang GT. Substance P induces interleukin-8 secretion from human dental pulp cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;96(4):478–85.

    PubMed  Google Scholar 

  64. Trantor IR, Messer HH, Birner R. The effects of neuropeptides (calcitonin gene related peptide and substance P) on cultured human pulp cells. J Dent Res. 1995;74(4):1066–71.

    PubMed  Google Scholar 

  65. Calland JW, Harris SE, Carnes DL. Human pulp cells respond to calcitonin gene-related peptide in vitro. J Endod. 1997;23(8):485–9.

    PubMed  Google Scholar 

  66. Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells. 2008;26(7):1787–95.

    PubMed  Google Scholar 

  67. Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S, Hibi H, Kadomatsu K, Ishiguro N, Ueda M. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest. 2012;122(1):80–90.

    PubMed Central  PubMed  Google Scholar 

  68. Taghipour Z, Karbalaie K, Kiani A, Niapour A, Bahramian H, Nasr-Esfahani MH, Baharvand H. Transplantation of undifferentiated and induced human exfoliated deciduous teeth-derived stem cells promote functional recovery of rat spinal cord contusion injury model. Stem Cells Dev. 2012;21(10):1794–802.

    PubMed  Google Scholar 

  69. Herzog B, Pellet-Many C, Britton G, Hartzoulakis B, Zachary IC. VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation. Mol Biol Cell. 2011;22:2766–76.

    PubMed Central  PubMed  Google Scholar 

  70. Rohm B, Ottemeyer A, Lohrum M, Püschel AW. Plexin/neuropilin complexes mediate repulsion by the axonal guidance signal semaphorin 3A. Mech Dev. 2000;93(1–2):95–104.

    PubMed  Google Scholar 

  71. Cvek M. Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Endod Dent Traumatol. 1992;8(2):45–55.

    PubMed  Google Scholar 

  72. Nör JE. Tooth regeneration in operative dentistry. Oper Dent. 2006;31(6):633–42.

    PubMed  Google Scholar 

  73. Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng A. 2010;16(2):605–15.

    Google Scholar 

  74. Rosa V, Zhang Z, Grande RH, Nör JE. Dental pulp tissue engineering in full-length human root canals. J Dent Res. 2013;92(11):970–5.

    PubMed  Google Scholar 

  75. Ravindran S, Zhang Y, Huang CC, George A. Odontogenic induction of dental stem cells by extracellular matrix-inspired three-dimensional scaffold. Tissue Eng A. 2014;20(1–2):92–102.

    Google Scholar 

  76. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    PubMed  Google Scholar 

  77. Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol. 2003;21(9):1025–32.

    PubMed  Google Scholar 

  78. Murray PE, Garcia-Godoy F, Hargreaves KM.Regenerative endodontics: a review of current status and a call for action. J Endod. 2007;33(4):377–90.

    PubMed  Google Scholar 

  79. Sloan AJ, Smith AH. Stem cells and the dental pulp: potential roles in dentine regeneration and repair. Oral Dis. 2007;13(2):151–7.

    PubMed  Google Scholar 

  80. Hargreaves KM, Giesler T, Henry M, Wang Y.Regeneration potential of the young permanent tooth: what does the future hold? J Endod. 2008;34(7):51–6.

    Google Scholar 

  81. Huang GT. Pulp and dentin tissue engineering and regeneration: current progress. Regen Med. 2009;4(5):697–707.

    PubMed Central  PubMed  Google Scholar 

  82. Goldberg M. Pulp healing and regeneration: more questions than answer. Adv Dent Res. 2011;23(3):270–4.

    PubMed  Google Scholar 

  83. Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod. 2008;34(2):166–71.

    PubMed Central  PubMed  Google Scholar 

  84. Ishizaka R, Hayashi Y, Iohara K, Sugiyama M, Murakami M, Yamamoto T, Fukuta O, Nakashima M. Stimulation of angiogenesis, neurogenesis and regeneration by side population cells from dental pulp. Biomaterials. 2013;34:1888–97.

    PubMed  Google Scholar 

  85. Bernardo ME, Cometa AM, Pagliara D, Vinti L, Rossi F, Cristantielli R, Palumbo G, Locatelli F. Ex vivo expansion of mesenchymal stromal cells. Best Pract Res Clin Haematol. 2011;24(1):73–81.

    PubMed  Google Scholar 

  86. Jung S, Panchalingam KM, Rosenberg L, Behie LA. Ex vivo expansion of human mesenchymal stem cells in defined serum-free media. Stem Cells Int. 2012;2012:123030.

    PubMed Central  PubMed  Google Scholar 

  87. Sakai VT, Cordeiro MM, Dong Z, Zhang Z, Zeitlin BD, Nör JE. Tooth slice/scaffold model of dental pulp tissue engineering. Adv Dent Res. 2011;23(3):325–32.

    PubMed  Google Scholar 

  88. Galler KM, Aulisa L, Regan KR, D’Souza RN, Hartgerink JD. Self-assembling multidomain peptide hydrogels: designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading. J Am Chem Soc. 2010;132(9):3217–23.

    PubMed Central  PubMed  Google Scholar 

  89. Galler KM, Cavender AC, Koeklue U, Suggs LJ, Schmalz G, D’Souza RN. Bioengineering of dental pulp cells in a PEGylated fibrin gel. Regen Med. 2011;6(2):191–200.

    PubMed  Google Scholar 

  90. Galler KM, Hartgerink JD, Cavender AC, Schmalz G, D’Souza RN. A customized self-assembling peptide hydrogel for dental pulp tissue engineering. Tissue Eng Part A. 2012;18(1–2):176–84.

    PubMed Central  PubMed  Google Scholar 

  91. Cavalcanti BN, Zeitlin BD, Nör JE. A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells. Dent Mater. 2013;29(1):97–102.

    PubMed Central  PubMed  Google Scholar 

  92. Carmeliet P, Collen D. Molecular analysis of blood vessel formation and disease. Am J Physiol. 1997;273:H2091–104.

    PubMed  Google Scholar 

  93. Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2009;29(6):789–91.

    PubMed  Google Scholar 

  94. Zieris A, Prokoph S, Levental KR, Welzel PB, Grimmer M, Freudenberg U, Werner C. FGF-2 and VEGF functionalization of starPEG-heparin hydrogels to modulate biomolecular and physical cues of angiogenesis. Biomaterials. 2010;31:7985–94.

    PubMed  Google Scholar 

  95. Srisuwan T, Tilkorn DJ, Al-Benna S, Abberton K, Messer HH, Thompson EW. Revascularization and tissue regeneration of an empty root canal space is enhanced by a direct blood supply and stem cells. Dent Traumatol. 2013;29(2):84–91.

    PubMed  Google Scholar 

  96. Syed-Picard FN, Ray Jr HL, Kumta PN, Sfeir C. Scaffoldless tissue-engineered dental pulp cell constructs for endodontic therapy. J Dent Res. 2014;93:250–5.

    PubMed  Google Scholar 

  97. Cavalcanti BN, Campos NS, Nör JE. Stem cells in health and disease. Rev Assoc Paul Cir Dent. 2011;65(2):92–7.

    Google Scholar 

  98. Banchs F, Trope M. Revascularization of immature permanent teeth with apical periodontitis: new treatment protocol? J Endod. 2004;30(4):196–200.

    PubMed  Google Scholar 

  99. Trope M. Treatment of the immature tooth with a non-vital pulp and apical periodontitis. Dent Clin North Am. 2010;54(2):313–24.

    PubMed  Google Scholar 

  100. Ding RY, Cheung GS, Chen J, Yin XZ, Wang QQ, Zhang CF. Pulp revascularization of immature teeth with apical periodontitis: a clinical study. J Endod. 2009;35(5):745–9.

    PubMed  Google Scholar 

  101. Jung IY, Lee SJ, Hargreaves KM. Biologically based treatment of immature permanent teeth with pulpal necrosis: a case series. Tex Dent J. 2012;129(6):601–16.

    PubMed  Google Scholar 

  102. Jeeruphan T, Jantarat J, Yanpiset K, Suwannapan L, Khewsawai P, Hargreaves KM. Mahidol study 1: comparison of radiographic and survival outcomes of immature teeth treated with either regenerative endodontic or apexification methods: a retrospective study. J Endod. 2012;38(10):1330–6.

    PubMed  Google Scholar 

  103. Kim JY, Xin E, Moioli EK, Chung J, Lee CH, Chen M, Fu SY, Koch PD, Mao JJ. Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng A. 2010;16(10):3023–31.

    Google Scholar 

  104. Kaigler D, Pagni G, Park CH, Braun TM, Holman LA, Yi E, Tarle SA, Bartel RL, Giannobile WV. Stem cell therapy for craniofacial bone regeneration: a randomized, controlled feasibility trial. Cell Transplant. 2013;22(5):767–77.

    PubMed Central  PubMed  Google Scholar 

  105. Mason S, Tarle SA, Osibin W, Kinfu Y, Kaigler D. Standardization and safety of alveolar bone-derived stem cell isolation. J Dent Res. 2014;93(1):55–61.

    PubMed  Google Scholar 

  106. Trevino EG, Patwardhan AN, Henry MA, Perry G, Dybdal-Hargreaves N, Hargreaves KM, Diogenes A. Effect of irrigants on the survival of human stem cells of the apical papilla in a platelet-rich plasma scaffold in human root tips. J Endod. 2011;37(8):1109–15.

    PubMed  Google Scholar 

  107. Ruparel NB, Teixeira FB, Ferraz CC, Diogenes A. Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. J Endod. 2012;38(10):1372–5.

    PubMed  Google Scholar 

  108. Martin DE, De Almeida JF, Henry MA, Khaing ZZ, Schmidt CE, Teixeira FB, Diogenes A. Concentration-dependent effect of sodium hypochlorite on stem cells of apical papilla survival and differentiation. J Endod. 2014;40(1):51–5.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Eduardo Nör DDS, MS, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Peralta, T.L., Nör, J.E. (2014). Regeneration of the Living Pulp. In: Goldberg, M. (eds) The Dental Pulp. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55160-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55160-4_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55159-8

  • Online ISBN: 978-3-642-55160-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics