Skip to main content

Multi-Robot Formation Morphing through a Graph Matching Problem

  • Conference paper

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 104))

Abstract

We consider the problem of changing smoothly between formations of spatially deployed multi-robot systems. The algorithm presented in this paper addresses scenarios in which gradual and seamless formation transitions are needed, a problem which we term formation morphing. We show that this can be achieved by routing agents on a Euclidean graph that corresponds to paths computed on —and projected from— an underlying three-dimensional matching graph. The three-dimensional matching graph is advantageous in that it simultaneously represents a logical assignment problem (for which an optimal solution must be sought) and metric information that comprises the spatial aspects of the Euclidean graph. Together, these features allow one to find concurrent disjoint routing paths for multiple source multiple goal (MSMG) routing problems, for which we prove one may find routing solutions to optimize different criteria. These disjoint MSMG paths efficiently steer the agents from the source positions to the goal positions, the process of which enables the seamless transition from an old formation to a new one.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agmon, N., Kaminka, G.A., Kraus, S., Traub, M.: Task Reallocation in Multi-Robot Formations. J. of Physical Agents 4(2) (2010)

    Google Scholar 

  2. Alonso-Mora, J., Breitenmoser, A., Rufli, M., Siegwart, R., Beardsley, P.: Multi-robot system for artistic pattern formation. In: IEEE International Conference on Robotics and Automation, pp. 4512–4517 (2011)

    Google Scholar 

  3. Balch, T., Arkin, R.C.: Behavior-based formation control for multi-robot teams. Trans. on Robotics and Auto. 14(6), 926–939 (1997)

    Article  Google Scholar 

  4. Chen, Y.Q., Wang, Z.: Formation control: A review and a new consideration. In: IEEE/RSJ Int. Conf. Intellig. Robots and Syst., pp. 3181–3186 (2005)

    Google Scholar 

  5. Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: A geometric characterization of leader-follower formation control. In: 2007 IEEE International Conference on Robotics and Automation, pp. 2397–2402 (2007)

    Google Scholar 

  6. Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  7. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control 49(9), 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  8. Hsieh, M., Kumar, V., Chaimowicz, L.: Decentralized controllers for shape generation with robotic swarms. Robotica 26(5), 691–701 (2008)

    Google Scholar 

  9. Karmani, R.K., Latvala, T., Agha, G.: On scaling multi-agent task reallocation using market-based approach. In: Intl Conf. on Self-Adaptive and Self-Organizing Systems (2007)

    Google Scholar 

  10. Kuhn, H.W.: The Hungarian Method for the Assignment Problem. Naval Research Logistics Quarterly 2(1), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  11. Kurabayashi, D., Choh, T., Cheng, J., Funato, T.: Adaptive formation transition among a mobile robot group based on phase gradient. In: IEEE International Conference on Robotics and Biomimetics, pp. 2001–2006 (2009)

    Google Scholar 

  12. Liu, L., Shell, D.A.: Tunable routing solutions for multi-robot navigation via the assignment problem: A 3d representation of the matching graph. In: Proceedings of IEEE International Conference on Robotics and Automation (May 2012)

    Google Scholar 

  13. Liu, L., Wang, Y., Yang, S., Watson, G., Ford, B.: Experimental studies of multi-robot formation and transforming. In: Proc. of UKACC Intl. Conf. on Control (2008)

    Google Scholar 

  14. Liu, L., Fine, B., Shell, D.A., Klappenecker, A.: Approximate characterization of multi-robot swarm shapes in sublinear-time. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2886–2891 (2011)

    Google Scholar 

  15. Lovász, L., Plummer, M.D.: Matching Theory. North-Holland (1986)

    Google Scholar 

  16. Michael, N., Zavlanos, M.M., Kumar, V., Pappas, G.J.: Distributed multi-robot task assignment and formation control. In: IEEE Intl. Conf on Robotics and Automation, pp. 128–133 (2008)

    Google Scholar 

  17. Murray, R.M.: Recent Research in Cooperative Control of Multi-Vehicle Systems. In: Intl. Conf. on Advances in Control and Optimization of Dynamical Systems (2007)

    Google Scholar 

  18. Ravichandran, R., Gordon, G., Goldstein, S.C.: A Scalable Distributed Algorithm for Shape Transformation in Multi-Robot Systems. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (2007)

    Google Scholar 

  19. Ren, W., Sorensen, N.: Distributed coordination architecture for multi-robot formation control. In: Robotics and Autonomous Systems, pp. 324–333 (2008)

    Google Scholar 

  20. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. SIGGRAPH Comput. Graph. 21(4), 25–34 (1987)

    Google Scholar 

  21. Shen, W.-M., Salemi, B.: Distributed and dynamic task reallocation in robot organizations. In: IEEE Intl. Conf. on Robotics and Automation, pp. 1019–1024 (2002)

    Google Scholar 

  22. Song, P., Kumar, V.: A potential field based approach to multi-robot manipulation. In: IEEE Intl. Conf. on Robotics and Automation, pp. 1217–1222 (2002)

    Google Scholar 

  23. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Flocking in Fixed and Switching Networks. IEEE Transactions on Automatic Control 52(5), 863–868 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lantao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, L., Shell, D.A. (2014). Multi-Robot Formation Morphing through a Graph Matching Problem. In: Ani Hsieh, M., Chirikjian, G. (eds) Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55146-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55146-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55145-1

  • Online ISBN: 978-3-642-55146-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics