Skip to main content

A New Wording of the Laplace Equation: Variational Numerical and Analytical Approach of the Liquid Capillary Rise Effect

  • Chapter
  • First Online:
Coabsorbent and Thermal Recovery Compression Heat Pumping Technologies

Part of the book series: Heat and Mass Transfer ((HMT))

  • 1087 Accesses

Abstract

This chapter focuses on the computational aspects involved in the liquid capillary rise effect. It is well known that in the neighbourhood of continuous media interfaces the molecular interaction generates surface tension forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Kikoine, A., & Kikoine, I. (1979). Physique moléculiare. Moscow: Mir Publishing House.

    Google Scholar 

  • Kirilin, V. A., Sicev, V. V., & Seindlin, A. E. (1985). Thermodynamics . Bucharest: Scientific and Encyclopedic Publishing House. (in Romanian).

    Google Scholar 

  • Krasnov, M., Kisselev, A., & Makarenko, G. (1977). Équations integrales. Moscou: Mir Publishing House.

    Google Scholar 

  • Landau, L. D., & Lifschitz, E. M. (1971). Mécanique des fluides. Moscow: Mir Publishing House.

    Google Scholar 

  • Leontiev, A. (1985). Théorie des echanges de masse et de chaleur. Moscow: Mir Publishing House.

    Google Scholar 

  • Murgulescu, I. G., & Segal, E. (1979). Cinetic-moleculaire theory of matter, II.1. Introduction in physical chemistry. Bucharest: Romanian Academy Publishing House. (in Romanian).

    Google Scholar 

  • Silov, G. E. (1989). Mathematical analysis . Bucharest: Scientific and Encyclopedic Publishing House. (in Romanian).

    Google Scholar 

  • Staicovici, M. D. (1998b). Variational numerical and analytical approach of the liquid capillary rise effect, Académie Roumaine, Revue Roumaine Des Sciences Techniques, série de Mecanique Appliquée, tome 43, no. 1, pp. 85–99, janvier-février, 1998.

    Google Scholar 

  • Stephan, P. (1995). Evaporative heat transfer in capillary grooved heat pipes. In: Proceedings of 19th International Congress of Refrigeration, IIIa (pp. 720–727).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihail-Dan Staicovici .

Appendix

Appendix

Let us consider two parallel infinitely-long walls symmetrical with respect to the yoz plane and separated by the capillary distance 2s, Fig. 10.A.1 The assumptions made for the cylindrical tube hold here true, too. The meniscus would be obtained via Eqs. (10.8), (10.9) and (10.4), minimizing the functional (Staicovici 1998b):

$$ F\left( y \right) = \int\limits_{0}^{s} {f\left( {y,y^{\prime} } \right)dx} = \int\limits_{0}^{s} {\left( {l_{c}^{2} \sqrt {1 + y^{\prime 2} } + y^{2} } \right)} dx = \text{min}. $$
(10.A.1)
Fig. 10.A.1
figure 3

Scheme of the capillary effect in an infinite parallel walls structure

The Euler equation for integrand \( f\left( {y,y^{\prime} } \right) \) has the form (Silov 1989):

$$ f - y^{\prime} f_{{y^{\prime} }} = C = const. $$
(10.A.2)

and the extremals are found solving the first order nonlinear differential equation:

$$ \frac{{l_{c}^{2} }}{{\sqrt {1 + y^{\prime 2} } }} = C - y^{2} $$
(10.A.3)

provided that:

$$ y\left( 0 \right) = y_{0} ;\quad y^{\prime} \left( 0 \right) = 0;\quad y^{\prime} \left( s \right) = c {\tan} \theta $$
(10.A.4)

The solution of Eq. (10.A.3) is expressed by the elliptic integral (Landau 1971):

$$ x\left( y \right) = \int\limits_{{y_{0} }}^{y} {\frac{{\left( {A - \frac{{t^{2} }}{{l_{c}^{2} }}} \right)dt}}{{\sqrt {1 - \left( {A - \frac{{t^{2} }}{{l_{c}^{2} }}} \right)^{2} } }}} $$
(10.A.5)

where

$$ A = \frac{C}{{l_{c}^{2} }} = 1 + \frac{{y_{0}^{2} }}{{l_{c}^{2} }} $$
(10.A.6)

and \( y \in \lfloor{y_{0} ,l_{c} \sqrt {A - \sin \theta } } \rfloor \).

The projection of force, Eq. (10.7), on the oy axis gives the integral-differential equation:

$$ \int\limits_{0}^{x} {y\left( t \right)dt} = \frac{1}{2}l_{c}^{2} \frac{{y^{\prime} }}{{\sqrt {1 + y^{\prime 2} } }} $$
(10.A.7)

Differentiating it totally with respect to x yields the second-order differential equation:

$$ \frac{y}{{l_{c}^{2} }} = \frac{{y^{\prime\prime} }}{{2\left( {1 + y^{\prime 2} } \right)^{3/2} }} $$
(10.A.8)

Equation (10.A.8) is exactly Eq. (10.14) for const. = 0. The right-hand member represents the mean curvature of the surface. Multiplying it by \( y^{\prime} \) and integrating once, Eq. (10.A.3) is obtained, checking the equivalence of energy, force and pressure equations, in this case, also.

The application of the successive differentiation method, mentioned in Sect. 10.4., to Eq. (10.A.3) for Cauchy initial conditions (10.A.4), gives the following analytical expression of the liquid meniscus shape in case of the infinite parallel walls capillary:

$$ y\left( x \right) = y_{0} + 2\frac{{y_{0} }}{{l_{c}^{2} }}\frac{{x^{2} }}{2!} + 4\frac{{y_{0} }}{{l_{c}^{2} }}\left[ {\frac{1}{{l_{c}^{2} }} + 6\left( {\frac{{y_{0} }}{{l_{c}^{2} }}} \right)^{2} } \right]\frac{{x^{4} }}{4!} + 8\frac{{y_{0} }}{{l_{c}^{2} }}\left[ {\frac{1}{{l_{c}^{4} }} + \frac{66}{{l_{c}^{2} }}\left( {\frac{{y_{0} }}{{l_{c}^{2} }}} \right)^{2} + 180\left( {\frac{{y_{0} }}{{l_{c}^{2} }}} \right)^{4} } \right]\frac{{x^{6} }}{6!} + \cdots $$
(10.A.9)

where, 0 ≤ x ≤ s. Equation (10.A.9) must be supplemented with:

$$ y^{\prime} \left( s \right) = c {\tan} \theta $$
(10.A.10)

Identifying the true meniscus shape given by Eq. (10.A.9) with an assimilated circular cylindrical surface, described by Eq. (10.35), implies that the curvature radius would be \( r = l_{c}^{2} /\left( {2y_{0} } \right) \) for the two first terms, but this holds not true for the higher-order terms. For this reason, the assimilation with a circular cylindrical meniscus is not recommended.

Finally, the functional (10.A.1) describes, also, the conditions of equilibrium of the liquid contained in an infinite reservoir and curved near a straight wall, Fig. 10.A.2. Here, Eq. (10.A.3) must be solved together with the new boundary conditions (the origin of the xoy coordinate system is moved at the wall):

$$ y^{\prime} \left( 0 \right) = - c{\tan} \theta ;\quad y\left( \infty \right) = y^{\prime} \left( \infty \right) = 0 $$
(10.A.11)
Fig. 10.A.2
figure 4

Capillary effect near a straight wall in an infinite liquid reservoir

This time A from Eq. (10.A.6) equals unit, A = 1, and Eq. (10.A.5) has the primitive:

$$ x\left( y \right) = - \frac{{l_{c} }}{2\sqrt 2 }arg\,\text{tan}\sqrt {1 - \frac{1}{2}\left( {\frac{y}{{l_{c} }}} \right)^{2} } + \sqrt {2l_{c}^{2} - y^{2} } + x_{0} $$
(10.A.12)

where the integration constant x 0 is found for x = 0 and \( y = l_{c} \sqrt {1 - \sin \theta } \).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Staicovici, MD. (2014). A New Wording of the Laplace Equation: Variational Numerical and Analytical Approach of the Liquid Capillary Rise Effect. In: Coabsorbent and Thermal Recovery Compression Heat Pumping Technologies. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54684-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54684-6_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54683-9

  • Online ISBN: 978-3-642-54684-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics