Skip to main content

Targeted Editing of Therapeutic Genes Using DNA-Based Transcriptional Activators: Scope and Challenges

  • Chapter
  • First Online:
Chemical Biology of Nucleic Acids

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

In recent years, there has been an increasing interest among the clinicians to devise genetic knowledge-based therapeutic strategies to treat complex diseases. Since targeted treatments ensure better drug efficacy and fewer long-term side effects, development of tailor-made drugs is of rising demand. Through modern biological and analytical techniques, we could now predict the transcription factors associated with disorders and design chemical and/or biological tools to reset the transcriptional machinery of the diseased cell and restore them back to healthy state. However, therapeutic targeting of the defected genes in the body is not straightforward owing to the critical influence of the dynamic epigenome. In this chapter, we give a detailed overview of the customizable artificial transcription activators and therapeutically significant transcription factors and suggest the need to gain inspiration from the coordinated chromatin modifications observed in natural cellular environment and design targeting transcriptional activators with epigenetic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amir RE, Van den Veyver IB, Wan M et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    Article  PubMed  CAS  Google Scholar 

  • Baker M (2012) Gene-editing nucleases. Nat Methods 9:23–26

    Article  PubMed  CAS  Google Scholar 

  • Barbieri CE, Baca SC, Lawrence MS et al (2012) Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 44:685–689

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Beffert U, Weeber EJ, Durudas A et al (2005) Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47:567–579

    Article  PubMed  CAS  Google Scholar 

  • Bilu Y, Barkai N (2005) The design of transcription-factor binding sites is affected by combinatorial regulation. Genome Biol 6:R103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13:394–401

    Article  PubMed  CAS  Google Scholar 

  • Burnett R, Melander C, Puckett JW et al (2006) DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA · TTC repeats in Friedreich’s ataxia. Proc Natl Acad Sci U S A 103:11497–11502

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ceol CJ, Houvras Y, Jane-Valbuena J et al (2011) The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471:513–517

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chenoweth DM, Meier JL, Dervan PB (2013) Pyrrole-Imidazole polyamides distinguish between double-helical DNA and RNA. Angew Chem Int Ed 52:415–418

    Article  CAS  Google Scholar 

  • Chi Y, Huddleston MJ, Zhang X et al (2001) Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev 15:1078–1092

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cloud J (2010) Why your DNA isn’t your destiny. Time Mag 61:175–189

    Google Scholar 

  • Conaway RC, Conaway JW (2011) Function and regulation of the mediator complex. Curr Opin Genet Dev 21:225–230

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150:12–27

    Article  PubMed  CAS  Google Scholar 

  • Dickinson LA, Trauger JW, Baird EE et al (1999) Anti-repression of polymerase II transcription by a designed ligand. Biochemistry 38:10801–10807

    Article  PubMed  CAS  Google Scholar 

  • Durrin LK, Mann RK, Grunstein M (1992) Nucleosome loss activates CUP1 and HIS3 promoters to fully induced levels in the yeast Saccharomyces cerevisiae. Mol Cell Biol 12:1621–1629

    PubMed Central  PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    Article  PubMed  CAS  Google Scholar 

  • Frances MB, Mukund T, Satyajit M (2012) Evolutionary cell biology: lessons from diversity. Nat Cell Biol 14:651

    Article  CAS  Google Scholar 

  • Goh YS, Grants JM (2012) Mutations in the mediator subunit MED23 link intellectual disability to immediate early gene regulation. Clin Genet 81:430–432

    Article  PubMed  CAS  Google Scholar 

  • Grueter CE, van Rooij E, Johnson BA et al (2012) A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell 149:671–683

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hamm CA, Costa FF (2011) The impact of epigenomics on future drug design and new therapies. Drug Discov Today 16:626–635

    Article  PubMed  CAS  Google Scholar 

  • Han L, Pandian GN, Junetha S et al (2013) A synthetic small molecule for targeted transcriptional activation of germ cell genes in a human somatic cell. Angew Chem Int Ed. doi:10.1002/anie.201306766

    Google Scholar 

  • He A, Kong SW, Ma Q et al (2011) Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proc Natl Acad Sci U S A 108:5632–5637

    Article  PubMed Central  PubMed  Google Scholar 

  • Hockemeyer D, Wang H, Kiani S et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29:731–734

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Iwakuma T, Lozano G, Flores ER (2005) Li-Fraumeni syndrome: a p53 family affair. Cell Cycle 4:865–867

    Article  PubMed  CAS  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  PubMed  CAS  Google Scholar 

  • Jiang YH, Bressler J, Beaudet AL (2004) Epigenetics and human disease. Annu Rev Genomics Hum Genet 5:479–510

    Article  PubMed  CAS  Google Scholar 

  • Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kalin JH, Butler KV, Kozikowski AP (2009) Creating zinc monkey wrenches in the treatment of epigenetic disorders. Curr Opin Chem Biol 13:263–271

    Article  PubMed  CAS  Google Scholar 

  • Kashiwazaki G, Bando T, Yoshidome T et al (2012) Synthesis and biological properties of highly sequence specific-alkylating N-methylpyrrole–N-methylimidazole polyamide conjugates. J Med Chem 55:2057–2066

    Article  PubMed  CAS  Google Scholar 

  • Keaveney M, Struhl K (1998) Activator-mediated recruitment of the RNA polymerase II machinery is the predominant mechanism for transcriptional activation in yeast. Mol Cell 1:917–924

    Article  PubMed  CAS  Google Scholar 

  • Lai CSL, Fisher SE, Hurst JA et al (2001) A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413:519–523

    Article  PubMed  CAS  Google Scholar 

  • Lamb MJ, Jablonka E (2005) Evolution in four dimensions: genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press, Cambridge, MA, pp 5–34

    Google Scholar 

  • Lee LW, Mapp AK (2010) Transcriptional switches: chemical approaches to gene regulation. J Biol Chem 285:11033–11038

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee TI, Young RA (2013) Transcriptional regulation and its misregulation in disease. Cell 152:1237–1251

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li J, Chen C, Chen C et al (2011) Neurotensin receptor 1 gene (NTSR1) polymorphism is associated with working memory. PLoS ONE 6(3):e17365

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lin CY, Lovén J, Rahl PB et al (2012) Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151:56–67

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu XY, Wang J, Zheng JH et al (2011) Involvement of a novel GATA4 mutation in atrial septal defects. Int J Mol Med 28:17–23

    PubMed  Google Scholar 

  • Luo Z, Lin C, Guest E et al (2012) The super elongation complex family of RNA polymerase II elongation factors: gene target specificity and transcriptional output. Mol Cell Biol 32:2608–2617

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Maestro MA, Cardalda C, Boj SF et al (2007) Distinct roles of HNF1beta, HNF1alpha, and HNF4alpha in regulating pancreas development, beta-cell function and growth. Endocr Dev 12:33–45

    Article  PubMed  CAS  Google Scholar 

  • Majmudar CY, Lum JK, Prasov L et al (2005) Functional specificity of artificial transcriptional activators. Chem Biol 12:313–321

    Article  PubMed  CAS  Google Scholar 

  • Mak AN, Bradley P, Cernadas RA et al (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mannini L, Musio A (2011) The dark side of cohesin: the carcinogenic point of view. Mutat Res 728:81–87

    Article  PubMed  CAS  Google Scholar 

  • Mapp AK, Ansari AZ, Ptashne M et al (2000) Activation of gene expression by small molecule transcription factors. Proc Natl Acad Sci U S A 97:3930–3935

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Masuda S, Wu J, Hishida T et al (2013) Chemically induced pluripotent stem cells (CiPSCs): a transgene-free approach. J Mol Cell Biol 5:354–355

    Article  PubMed  CAS  Google Scholar 

  • Maurano MT, Humbert R, Rynes E et al (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337:1190–1195

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McCulley DJ, Black BL (2012) Transcription factor pathways and congenital heart disease. Curr Top Dev Biol 100:253–277

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Meier JL, Montgomery DC, Dervan PB (2012) Enhancing the cellular uptake of Py–Im polyamides through next-generation aryl turns. Nucleic Acids Res 40:2345–2356

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mercer AC, Gaj T, Fuller RP (2012) Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res 40:11163–11172

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Miller JC, Tan S, Qiao G et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  PubMed  CAS  Google Scholar 

  • Min JW, Haegeman G, Ysebaert M et al (1972) Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein. Nature 237:82–88

    Article  Google Scholar 

  • Minichiello L (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10:850–860

    Article  PubMed  CAS  Google Scholar 

  • Mussolino C, Morbitzer R, Lütge F et al (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39:9283–9293

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Odom DT, Zizlsperger N, Gordon DB et al (2004) Control of pancreas and liver gene expression by HNF transcription factors. Science 303:1378–1381

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ohtsuki A, Kimura MT, Minoshima M et al (2009) Synthesis and properties of PI polyamide-SAHA conjugate. Tetrahedron Lett 50:7288–7292

    Article  CAS  Google Scholar 

  • Olson EN (2006) Gene regulatory networks in the evolution and development of the heart. Science 313:1922–1927

    Article  PubMed  CAS  Google Scholar 

  • Ouyang P, Saarel E, Bai Y et al (2011) A de novo mutation in NKX2.5 associated with atrial septal defects, ventricular noncompaction, syncope and sudden death. Clin Chim Acta 412:170–175

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pandian GN, Sugiyama H (2012) Programmable genetic switches to control transcriptional machinery of pluripotency. Biotechnol J 7:798–809

    Article  PubMed  CAS  Google Scholar 

  • Pandian GN, Sugiyama H (2013) Strategies to modulate heritable epigenetic defects in cellular machinery: lessons from nature. Pharmaceuticals 6:1–24

    Article  PubMed Central  Google Scholar 

  • Pandian GN, Shinohara K, Ohtsuki A et al (2011) Synthetic small molecules for epigenetic activation of pluripotency genes in mouse embryonic fibroblasts. ChemBioChem 12:2822–2828

    Article  PubMed  CAS  Google Scholar 

  • Pandian GN, Ohtsuki A, Bando T et al (2012a) Development of programmable small DNA-binding molecules with epigenetic activity for induction of core pluripotency genes. Bioorg Med Chem 20(8):2656–2660

    Article  PubMed  CAS  Google Scholar 

  • Pandian GN, Nakano Y, Sato S et al (2012b) A synthetic small molecule for rapid induction of multiple pluripotency genes in mouse embryonic fibroblast. Sci Rep 2:e544

    Article  CAS  Google Scholar 

  • Pandian GN, Taniguchi J, Junetha S et al (2014) Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts. Sci Rep 4:e3843

    Article  CAS  Google Scholar 

  • Perez EE, Wang J, Miller JC et al (2008) Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26:808–816

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pfeifer A, Verma IM (2001) Gene therapy: promises and problems. Annu Rev Genomics Hum Genet 2:177–211

    Article  PubMed  CAS  Google Scholar 

  • Ptashne M, Gann A (2002) Genes and signals. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Rando OJ (2012) Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr Opin Genet Dev 22:148–155

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Reyon D, Tsai SQ, Khayter C et al (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Robinson KM, Kadonaga JT (1998) The use of chromatin templates to recreate transcriptional regulatory phenomena in vitro. Biochim Biophys Acta 1378:1–6

    Google Scholar 

  • Rump P, Niessen RC, Verbruggen KT et al (2011) A novel mutation in MED12 causes FG syndrome (OpitzKaveggia syndrome). Clin Genet 79:183–188

    Article  PubMed  CAS  Google Scholar 

  • Ryan MM, Ryan B, Smith MK et al (2012) Temporal profiling of gene networks associated with the late phase of long-term potentiation in vivo. PLoS ONE 7:e40538

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Saha A, Pandian GN, Sato S et al (2013) Synthesis and biological evaluation of a targeted DNA-binding transcriptional activator with HDAC8 inhibitory activity. Bioorg Med Chem 21:4201–4209

    Article  PubMed  CAS  Google Scholar 

  • Sanda T, Lawton LN, Barrasa MI et al (2012) Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell 22:209–221

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Santen GW, Kriek M, van Attikum H (2012) SWI/SNF complex in disorder: SWItching from malignancies to intellectual disability. Epigenetics 7:1219–1224

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schreiber SL (2005) Nat Chem Biol 1:64–66

    Article  PubMed  CAS  Google Scholar 

  • Sebastiano V, Maeder ML, Angstman JF et al (2011) In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 29:1717–1726

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Seitan VC, Merkenschlager M (2012) Cohesin and chromatin organisation. Curr Opin Genet Dev 22:93–100

    Article  PubMed  CAS  Google Scholar 

  • Shimogawa H, Kwon Y, Mao Q et al (2004) A wrench-shaped synthetic molecule that modulates a transcription factor–coactivator interaction. J Am Chem Soc 126:3461–3471

    Article  PubMed  CAS  Google Scholar 

  • Soldner F, Laganière J, Cheng AW et al (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146:318–331

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sun N, Zhao H (2013) Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol Bioeng 110:1811–1821

    Article  PubMed  CAS  Google Scholar 

  • Swaby JA, Silversides CK, Bekeschus SC et al (2011) Complex congenital heart disease in unaffected relatives of adults with 22q11.2 deletion syndrome. Am J Cardiol 107:466–471

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Synold TW, Xi B, Wu J et al (2012) Single-dose pharmacokinetic and toxicity analysis of pyrrole–imidazole polyamides in mice. Cancer Chemother Pharmacol 70:617–625

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Thandavarayan RA, Giridharan VV, Sari FR et al (2011) Depletion of 14-3-3 protein exacerbates cardiac oxidative stress, inflammation and remodeling process via modulation of MAPK/NF-ĸB signaling pathways after streptozotocin-induced diabetes mellitus. Cell Physiol Biochem 28:911–922

    Article  PubMed  CAS  Google Scholar 

  • Trauger JW, Baird EE, Dervan PB (1998) Recognition of 16 base Pairs in the minor groove of DNA by a pyrrole-imidazole polyamide dimer. J Am Chem Soc 120:3534–3535

    Article  CAS  Google Scholar 

  • Vaijayanthi T, Bando T, Pandian GN et al (2012) Progress and prospects of pyrrole-imidazole polyamide–fluorophore conjugates as sequence-selective DNA probes. ChemBioChem 13:2170–2185

    Article  PubMed  CAS  Google Scholar 

  • Vaijayanthi T, Bando T, Hashiya K et al (2013) Design of a new fluorescent probe: pyrrole/imidazole hairpin polyamides with pyrene conjugation at their γ-turn. Bioorg Med Chem 21:852–855

    Article  PubMed  CAS  Google Scholar 

  • Wu ZQ, Belanger G, Brennan BB et al (2003) Targeting the transcriptional machinery with unique artificial transcriptional activators. J Am Chem Soc 125:12390–12391

    Article  PubMed  CAS  Google Scholar 

  • Wu YL, Pandian GN, Ding YP et al (2013) Clinical grade iPS cells: need for versatile small molecules and optimal cell sources. Chem Biol 20:1311–1322

    Article  PubMed  CAS  Google Scholar 

  • Yusa K, Rashid ST, Marchand HS et al (2011) Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478:391–394

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhou Q, Li T, Price DH (2012) RNA polymerase II elongation control. Annu Rev Biochem 81:119–143

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Sugiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pandian, G.N., Sugiyama, H. (2014). Targeted Editing of Therapeutic Genes Using DNA-Based Transcriptional Activators: Scope and Challenges. In: Erdmann, V., Markiewicz, W., Barciszewski, J. (eds) Chemical Biology of Nucleic Acids. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54452-1_19

Download citation

Publish with us

Policies and ethics