Skip to main content

Filaggrin-2

  • Chapter
  • First Online:
Filaggrin

Abstract

Filaggrin-2 is, besides trichohyalin-like 1, trichohyalin, repetin, hornerin, pro-filaggrin, and cornulin, the seventh known member of the S100 fused-type protein family. The filaggrin-2 gene maps into the epidermal differentiation complex, which is located on human chromosome 1q21.3 between pro-filaggrin and cornulin. Filaggrin-2 mRNA and protein are mainly found in keratinizing epithelia, particularly in skin. Its expression pattern is restricted to the upper stratum granulosum and stratum corneum, similar to that of filaggrin, and is also dependent on the differentiation state of the keratinocytes. Structurally filaggrin-2 and filaggrin are closely related, as are all the other S100 fused-type protein members. They share a common genomic structure with three exons, of which the first is noncoding, the second carries the coding sequence for the first 47 amino acids, and the third comprises the remaining coding sequence. On the protein level, all S100 fused-type proteins possess an N-terminal (potential) Ca2+-binding S100/EF hand domain and multiple repeating units that differ from protein to protein. Filaggrin-2 has two kinds of repeats, one resembling partially repeats of hornerin and the other resembling in part the repeats of filaggrin. The role of filaggrin-2 in health and diseases is poorly understood and scarcely analyzed; current findings are summarized and will be further discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toulza E, Mattiuzzo NR, Galliano MF, Jonca N, Dossat C, Jacob D, et al. Large-scale identification of human genes implicated in epidermal barrier function. Genome Biol. 2007;8(6):R107.

    PubMed Central  PubMed  Google Scholar 

  2. Wu Z, Hansmann B, Meyer-Hoffert U, Gläser R, Schröder JM. Molecular identification and expression analysis of filaggrin-2, a member of the S100 fused-type protein family. PLoS ONE. 2009;4(4):e5227.

    PubMed Central  PubMed  Google Scholar 

  3. Gibbs S, Fijneman R, Wiegant J, van Kessel AG, van De Putte P, Backendorf C. Molecular characterization and evolution of the SPRR family of keratinocyte differentiation markers encoding small proline-rich proteins. Genomics. 1993;16(3):630–7.

    CAS  PubMed  Google Scholar 

  4. Rice RH, Green H. The cornified envelope of terminally differentiated human epidermal keratinocytes consists of cross-linked protein. Cell. 1977;11(2):417–22.

    CAS  PubMed  Google Scholar 

  5. Greenberg CS, Birckbichler PJ, Rice RH. Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J. 1991;5(15):3071–7.

    CAS  PubMed  Google Scholar 

  6. Pearton DJ, Dale BA, Presland RB. Functional analysis of the pro-filaggrin N-terminal peptide: identification of domains that regulate nuclear and cytoplasmic distribution. J Invest Dermatol. 2002;119(3):661–9.

    CAS  PubMed  Google Scholar 

  7. Fontes MR, Teh T, Kobe B. Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. J Mol Biol. 2000;297(5):1183–94.

    CAS  PubMed  Google Scholar 

  8. Zhang D, Karunaratne S, Kessler M, Mahony D, Rothnagel JA. Characterization of mouse pro-filaggrin: evidence for nuclear engulfment and translocation of the pro-filaggrin B-domain during epidermal differentiation. J Invest Dermatol. 2002;119(4):905–12.

    CAS  PubMed  Google Scholar 

  9. Ishida-Yamamoto A, Takahashi H, Presland RB, Dale BA, Iizuka H. Translocation of pro-filaggrin N-terminal domain into keratinocyte nuclei with fragmented DNA in normal human skin and loricrin keratoderma. Lab Invest. 1998;78(10):1245–53.

    CAS  PubMed  Google Scholar 

  10. Aho S, Harding CR, Lee JM, Meldrum H, Bosko CA. Regulatory role for the pro-filaggrin N-terminal domain in epidermal homeostasis. J Invest Dermatol. 2012;132(10):2376–85.

    CAS  PubMed  Google Scholar 

  11. Horton P, Nakai K. Better prediction of protein cellular localization sites with the k nearest neighbors classifier. Proc Int Conf Intell Syst Mol Biol. 1997;5:147–52.

    CAS  PubMed  Google Scholar 

  12. Pearton DJ, Nirunsuksiri W, Rehemtulla A, Lewis SP, Presland RB, Dale BA. Proprotein convertase expression and localization in epidermis: evidence for multiple roles and substrates. Exp Dermatol. 2001;10(3):193–203.

    CAS  PubMed  Google Scholar 

  13. Presland RB, Kimball JR, Kautsky MB, Lewis SP, Lo CY, Dale BA. Evidence for specific proteolytic cleavage of the N-terminal domain of human pro-filaggrin during epidermal differentiation. J Invest Dermatol. 1997;108(2):170–8.

    CAS  PubMed  Google Scholar 

  14. Duckert P, Brunak S, Blom N. Prediction of proprotein convertase cleavage sites. Protein Eng Des Sel. 2004;17(1):107–12.

    CAS  PubMed  Google Scholar 

  15. Nakayama K. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J. 1997;327(Pt 3):625–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Mathur P, Murray B, Crowell T, Gardner H, Allaire N, Hsu YM, et al. Murine peptidoglycan recognition proteins PglyrpIalpha and PglyrpIbeta are encoded in the epidermal differentiation complex and are expressed in epidermal and hematopoietic tissues. Genomics. 2004;83(6):1151–63.

    CAS  PubMed  Google Scholar 

  17. Hansmann B, Ahrens K, Wu Z, Proksch E, Meyer-Hoffert U, Schröder JM. Murine filaggrin-2 is involved in epithelial barrier function and down-regulated in metabolically induced skin barrier dysfunction. Exp Dermatol. 2012;21(4):271–6.

    CAS  PubMed  Google Scholar 

  18. Yuspa SH, Kilkenny AE, Steinert PM, Roop DR. Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentrations in vitro. J Cell Biol. 1989;109(3):1207–17.

    CAS  PubMed  Google Scholar 

  19. Makino T, Takaishi M, Morohashi M, Huh NH. Hornerin, a novel pro-filaggrin-like protein and differentiation-specific marker isolated from mouse skin. J Biol Chem. 2001;276(50):47445–52.

    CAS  PubMed  Google Scholar 

  20. Wu Z, Meyer-Hoffert U, Reithmayer K, Paus R, Hansmann B, He Y, et al. Highly complex peptide aggregates of the S100 fused-type protein hornerin are present in human skin. J Invest Dermatol. 2009;129(6):1446–58.

    CAS  PubMed  Google Scholar 

  21. Krieg P, Schuppler M, Koesters R, Mincheva A, Lichter P, Marks F. Repetin (Rptn), a new member of the “fused gene” subgroup within the S100 gene family encoding a murine epidermal differentiation protein. Genomics. 1997;43(3):339–48.

    CAS  PubMed  Google Scholar 

  22. Huber M, Siegenthaler G, Mirancea N, Marenholz I, Nizetic D, Breitkreutz D, et al. Isolation and characterization of human repetin, a member of the fused gene family of the epidermal differentiation complex. J Invest Dermatol. 2005;124(5):998–1007.

    CAS  PubMed  Google Scholar 

  23. Contzler R, Favre B, Huber M, Hohl D. Cornulin, a new member of the “fused gene” family, is expressed during epidermal differentiation. J Invest Dermatol. 2005;124(5):990–7.

    CAS  PubMed  Google Scholar 

  24. Hamilton EH, Payne Jr RE, O’Keefe EJ. Trichohyalin: presence in the granular layer and stratum corneum of normal human epidermis. J Invest Dermatol. 1991;96(5):666–72.

    CAS  PubMed  Google Scholar 

  25. Dale BA, Scofield JA, Hennings H, Stanley JR, Yuspa SH. Identification of filaggrin in cultured mouse keratinocytes and its regulation by calcium. J Invest Dermatol. 1983;81(1Suppl):90s–595.

    CAS  PubMed  Google Scholar 

  26. Deucher A, Efimova T, Eckert RL. Calcium-dependent involucrin expression is inversely regulated by protein kinase C (PKC)alpha and PKCdelta. J Biol Chem. 2002;277(19):17032–40.

    CAS  PubMed  Google Scholar 

  27. Hohl D, Mehrel T, Lichti U, Turner ML, Roop DR, Steinert PM. Characterization of human loricrin. Structure and function of a new class of epidermal cell envelope proteins. J Biol Chem. 1991;266(10):6626–36.

    CAS  PubMed  Google Scholar 

  28. Mattiuzzo NR, Toulza E, Jonca N, Serre G, Guerrin M. A large-scale multi-technique approach identifies forty-nine new players of keratinocyte terminal differentiation in human epidermis. Exp Dermatol. 2011;20(2):113–8.

    PubMed  Google Scholar 

  29. Hsu CY, Henry J, Raymond AA, Mechin MC, Pendaries V, Nassar D, et al. Deimination of human filaggrin-2 promotes its proteolysis by calpain 1. J Biol Chem. 2011;286(26):23222–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Lee SC, Kim IG, Marekov LN, O’Keefe EJ, Parry DA, Steinert PM. The structure of human trichohyalin. Potential multiple roles as a functional EF-hand-like calcium-binding protein, a cornified cell envelope precursor, and an intermediate filament-associated (cross-linking) protein. J Biol Chem. 1993;268(16):12164–76.

    CAS  PubMed  Google Scholar 

  31. Presland RB, Bassuk JA, Kimball JR, Dale BA. Characterization of two distinct calcium-binding sites in the amino-terminus of human pro-filaggrin. J Invest Dermatol. 1995;104(2):218–23.

    CAS  PubMed  Google Scholar 

  32. Presland RB, Rothnagel JA, Lawrence OT. Pro-filaggrin and the fused S100 family of calcium-binding proteins. In: Elias PM, Feingold KR, editors. Skin barrier. New York: Taylor & Francis; 2006. p. 111–40.

    Google Scholar 

  33. Sandilands A, Sutherland C, Irvine AD, McLean WH. Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci. 2009;122(Pt 9):1285–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Matsui T, Miyamoto K, Kubo A, Kawasaki H, Ebihara T, Hata K, et al. SASPase regulates stratum corneum hydration through pro-filaggrin-to-filaggrin processing. EMBO Mol Med. 2011;3(6):320–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Lonsdale-Eccles JD, Teller DC, Dale BA. Characterization of a phosphorylated form of the intermediate filament-aggregating protein filaggrin. Biochemistry. 1982;21(23):5940–8.

    CAS  PubMed  Google Scholar 

  36. Steinert PM, Cantieri JS, Teller DC, Lonsdale-Eccles JD, Dale BA. Characterization of a class of cationic proteins that specifically interact with intermediate filaments. Proc Natl Acad Sci U S A. 1981;78(7):4097–101.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Dale BA, Presland RB, Lewis SP, Underwood RA, Fleckman P. Transient expression of epidermal filaggrin in cultured cells causes collapse of intermediate filament networks with alteration of cell shape and nuclear integrity. J Invest Dermatol. 1997;108(2):179–87.

    CAS  PubMed  Google Scholar 

  38. Listwan P, Rothnagel JA. Keratin bundling proteins. Methods Cell Biol. 2004;78:817–27.

    CAS  PubMed  Google Scholar 

  39. Yamazaki M, Ishidoh K, Suga Y, Saido TC, Kawashima S, Suzuki K, et al. Cytoplasmic processing of human pro-filaggrin by active mu-calpain. Biochem Biophys Res Commun. 1997;235(3):652–6.

    CAS  PubMed  Google Scholar 

  40. Sakabe JI, Yamamoto M, Hirakawa S, Motoyama A, Ohta I, Tatsuno K, et al. Kallikrein-related peptidase 5 functions in proteolytic processing of pro-filaggrin in cultured human keratinocytes. J Biol Chem. 2013;288(24):17179–89.

    CAS  PubMed  Google Scholar 

  41. Descargues P, Deraison C, Bonnart C, Kreft M, Kishibe M, Ishida-Yamamoto A, et al. Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat Genet. 2005;37(1):56–65.

    CAS  PubMed  Google Scholar 

  42. Hewett DR, Simons AL, Mangan NE, Jolin HE, Green SM, Fallon PG, et al. Lethal, neonatal ichthyosis with increased proteolytic processing of filaggrin in a mouse model of Netherton syndrome. Hum Mol Genet. 2005;14(2):335–46.

    CAS  PubMed  Google Scholar 

  43. Vermeij WP, Alia A, Backendorf C. ROS quenching potential of the epidermal cornified cell envelope. J Invest Dermatol. 2011;131(7):1435–41.

    CAS  PubMed  Google Scholar 

  44. Rawlings AV, Harding CR. Moisturization and skin barrier function. Dermatol Ther. 2004;17 Suppl 1:43–8.

    PubMed  Google Scholar 

  45. Gibbs NK, Tye J, Norval M. Recent advances in urocanic acid photochemistry, photobiology and photoimmunology. Photochem Photobiol Sci. 2008;7(6):655–67.

    CAS  PubMed  Google Scholar 

  46. Chuang C, Lin SH, Huang F, Pan J, Josic D, Yu-Lee LY. Acetylation of RNA processing proteins and cell cycle proteins in mitosis. J Proteome Res. 2010;9(9):4554–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Danielsen JM, Sylvestersen KB, Bekker-Jensen S, Szklarczyk D, Poulsen JW, Horn H, et al. Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol Cell Proteomics. 2011;10(3):M110.

    PubMed Central  PubMed  Google Scholar 

  48. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010;143(7):1174–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Sutter CH, Bodreddigari S, Campion C, Wible RS, Sutter TR. 2,3,7,8-Tetrachlorodibenzo-p-dioxin increases the expression of genes in the human epidermal differentiation complex and accelerates epidermal barrier formation. Toxicol Sci. 2011;124(1):128–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Thornley JA, Trask HW, Ridley CJ, Korc M, Gui J, Ringelberg CS, et al. Differential regulation of polysome mRNA levels in mouse Hepa-1C1C7 cells exposed to dioxin. Toxicol In Vitro. 2011;25(7):1457–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Tauchi M, Hida A, Negishi T, Katsuoka F, Noda S, Mimura J, et al. Constitutive expression of aryl hydrocarbon receptor in keratinocytes causes inflammatory skin lesions. Mol Cell Biol. 2005;25(21):9360–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. van den Bogaard EH, Bergboer JG, Vonk-Bergers M, Vlijmen-Willems IM, Hato SV, van der Valk PG, et al. Coal tar induces AHR-dependent skin barrier repair in atopic dermatitis. J Clin Invest. 2013;123(2):917–27.

    PubMed Central  PubMed  Google Scholar 

  53. Zhao Y, Terron-Kwiatkowski A, Liao H, Lee SP, Allen MH, Hull PR, et al. Filaggrin null alleles are not associated with psoriasis. J Invest Dermatol. 2007;127(8):1878–82.

    CAS  PubMed  Google Scholar 

  54. Irvine AD, McLean WH. Breaking the (un)sound barrier: filaggrin is a major gene for atopic dermatitis. J Invest Dermatol. 2006;126(6):1200–2.

    CAS  PubMed  Google Scholar 

  55. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441–6.

    CAS  PubMed  Google Scholar 

  56. Palmer CN, Ismail T, Lee SP, Terron-Kwiatkowski A, Zhao Y, Liao H, et al. Filaggrin null mutations are associated with increased asthma severity in children and young adults. J Allergy Clin Immunol. 2007;120(1):64–8.

    CAS  PubMed  Google Scholar 

  57. Weidinger S, O’Sullivan M, Illig T, Baurecht H, Depner M, Rodriguez E, et al. Filaggrin mutations, atopic eczema, hay fever, and asthma in children. J Allergy Clin Immunol. 2008;121(5):1203–9.

    CAS  PubMed  Google Scholar 

  58. Sandilands A, O’Regan GM, Liao H, Zhao Y, Terron-Kwiatkowski A, Watson RM, et al. Prevalent and rare mutations in the gene encoding filaggrin cause ichthyosis vulgaris and predispose individuals to atopic dermatitis. J Invest Dermatol. 2006;126(8):1770–5.

    CAS  PubMed  Google Scholar 

  59. Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, Zhao Y, et al. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet. 2006;38(3):337–42.

    CAS  PubMed  Google Scholar 

  60. Chen H, Toh TK, Szeverenyi I, Ong RT, Theng CT, McLean WH, et al. Association of skin barrier genes within the PSORS4 locus is enriched in Singaporean Chinese with early-onset psoriasis. J Invest Dermatol. 2009;129(3):606–14.

    CAS  PubMed  Google Scholar 

  61. Marenholz I, Nickel R, Ruschendorf F, Schulz F, Esparza-Gordillo J, Kerscher T, et al. Filaggrin loss-of-function mutations predispose to phenotypes involved in the atopic march. J Allergy Clin Immunol.2006;118(4):866–71.

    CAS  PubMed  Google Scholar 

  62. Stemmler S, Nothnagel M, Parwez Q, Petrasch-Parwez E, Epplen JT, Hoffjan S. Variation in genes of the epidermal differentiation complex in German atopic dermatitis patients. Int J Immunogenet. 2009;36(4):217–22.

    CAS  PubMed  Google Scholar 

  63. Marenholz I, Rivera VA, Esparza-Gordillo J, Bauerfeind A, Lee-Kirsch MA, Ciechanowicz A, et al. Association screening in the Epidermal Differentiation Complex (EDC) identifies an SPRR3 repeat number variant as a risk factor for eczema. J Invest Dermatol. 2011;131(8):1644–9.

    CAS  PubMed  Google Scholar 

  64. Pellerin L, Henry J, Hsu CY, Balica S, Jean-Decoster C, Mechin MC, et al. Defects of filaggrin-like proteins in both lesional and nonlesional atopic skin. J Allergy Clin Immunol. 2013;131(4):1094–102.

    CAS  PubMed  Google Scholar 

  65. Wu Z. Analysis of two human gene clusters involved in innate immunity. Thesis, Christian-Albrechts-University of Kiel; 2005.

    Google Scholar 

  66. Broccardo CJ, Mahaffey S, Schwarz J, Wruck L, David G, Schlievert PM, et al. Comparative proteomic profiling of patients with atopic dermatitis based on history of eczema herpeticum infection and Staphylococcus aureus colonization. J Allergy Clin Immunol. 2011;127(1):186–93, 193.e1–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Suarez-Farinas M, Tintle SJ, Shemer A, Chiricozzi A, Nograles K, Cardinale I, et al. Nonlesional atopic dermatitis skin is characterized by broad terminal differentiation defects and variable immune abnormalities. J Allergy Clin Immunol. 2011;127(4):954–64.

    PubMed Central  PubMed  Google Scholar 

  68. Mathay C, Pierre M, Pittelkow MR, Depiereux E, Nikkels AF, Colige A, et al. Transcriptional profiling after lipid raft disruption in keratinocytes identifies critical mediators of atopic dermatitis pathways. J Invest Dermatol. 2011;131(1):46–58.

    CAS  PubMed  Google Scholar 

  69. Gutowska-Owsiak D, Schaupp AL, Salimi M, Taylor S, Ogg GS. Interleukin-22 downregulates filaggrin expression and affects expression of pro-filaggrin processing enzymes. Br J Dermatol. 2011;165(3):492–8.

    CAS  PubMed  Google Scholar 

  70. Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, Debenedetto A, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol. 2007;120(1):150–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Hvid M, Vestergaard C, Kemp K, Christensen GB, Deleuran B, Deleuran M. IL-25 in atopic dermatitis: a possible link between inflammation and skin barrier dysfunction? J Invest Dermatol. 2011;131(1):150–7.

    CAS  PubMed  Google Scholar 

  72. de Koning HD, van den Bogaard EH, Bergboer JG, Kamsteeg M, Vlijmen-Willems IM, Hitomi K, et al. Expression profile of cornified envelope structural proteins and keratinocyte differentiation-regulating proteins during skin barrier repair. Br J Dermatol. 2012;166(6):1245–54.

    PubMed  Google Scholar 

  73. Hou SY, Mitra AK, White SH, Menon GK, Ghadially R, Elias PM. Membrane structures in normal and essential fatty acid-deficient stratum corneum: characterization by ruthenium tetroxide staining and x-ray diffraction. J Invest Dermatol. 1991;96(2):215–23.

    CAS  PubMed  Google Scholar 

  74. Wertz PW, Cho ES, Downing DT. Effect of essential fatty acid deficiency on the epidermal sphingolipids of the rat. Biochim Biophys Acta. 1983;753(3):350–5.

    CAS  PubMed  Google Scholar 

  75. Bibel DJ, Miller SJ, Brown BE, Pandey BB, Elias PM, Shinefield HR, et al. Antimicrobial activity of stratum corneum lipids from normal and essential fatty acid-deficient mice. J Invest Dermatol. 1989;92(4):632–8.

    CAS  PubMed  Google Scholar 

  76. Proksch E, Feingold KR, Man MQ, Elias PM. Barrier function regulates epidermal DNA synthesis. J Clin Invest. 1991;87(5):1668–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Proksch E, Feingold KR, Elias PM. Epidermal HMG CoA reductase activity in essential fatty acid deficiency: barrier requirements rather than eicosanoid generation regulate cholesterol synthesis. J Invest Dermatol. 1992;99(2):216–20.

    CAS  PubMed  Google Scholar 

  78. Ekanayake-Mudiyanselage S, Aschauer H, Schmook FP, Jensen JM, Meingassner JG, Proksch E. Expression of epidermal keratins and the cornified envelope protein involucrin is influenced by permeability barrier disruption. J Invest Dermatol. 1998;111(3):517–23.

    CAS  PubMed  Google Scholar 

  79. Zanivan S, Gnad F, Wickstrom SA, Geiger T, Macek B, Cox J, et al. Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res. 2008;7(12):5314–26.

    CAS  PubMed  Google Scholar 

  80. Kim HK, Kim YK, Song IS, Lee SR, Jeong SH, Kim MH, et al. Human giant congenital melanocytic nevus exhibits potential proteomic alterations leading to melanotumorigenesis. Proteome Sci. 2012;10(1):50.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Cooksley-Decasper S, Reiser H, Thommen DS, Biedermann B, Neidhart M, Gawinecka J, et al. Antibody phage display assisted identification of junction plakoglobin as a potential biomarker for atherosclerosis. PLoS ONE. 2012;7(10):e47985.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Chertova E, Chertov O, Coren LV, Roser JD, Trubey CM, Bess Jr JW, et al. Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol. 2006;80(18):9039–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Ongusaha PP, Qi HH, Raj L, Kim YB, Aaronson SA, Davis RJ, et al. Identification of ROCK1 as an upstream activator of the JIP-3 to JNK signaling axis in response to UVB damage. Sci Signal. 2008;1(47):ra14.

    PubMed Central  PubMed  Google Scholar 

  84. Sharma K, Weber C, Bairlein M, Greff Z, Keri G, Cox J, et al. Proteomics strategy for quantitative protein interaction profiling in cell extracts. Nat Methods. 2009;6(10):741–4.

    CAS  PubMed  Google Scholar 

  85. Strang BL, Boulant S, Coen DM. Nucleolin associates with the human cytomegalovirus DNA polymerase accessory subunit UL44 and is necessary for efficient viral replication. J Virol. 2010;84(4):1771–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Emanuele MJ, Ciccia A, Elia AE, Elledge SJ. Proliferating cell nuclear antigen (PCNA)-associated KIAA0101/PAF15 protein is a cell cycle-regulated anaphase-promoting complex/cyclosome substrate. Proc Natl Acad Sci U S A. 2011;108(24):9845–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Jirawatnotai S, Hu Y, Michowski W, Elias JE, Becks L, Bienvenu F, et al. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature. 2011;474(7350):230–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Klockenbusch C, Kast J. Optimization of formaldehyde cross-linking for protein interaction analysis of non-tagged integrin beta1. J Biomed Biotechnol. 2010;2010:927585.

    PubMed Central  PubMed  Google Scholar 

  89. Vaezi A, Bauer C, Vasioukhin V, Fuchs E. Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev Cell. 2002;3(3):367–81.

    CAS  PubMed  Google Scholar 

  90. McMullan R, Lax S, Robertson VH, Radford DJ, Broad S, Watt FM, et al. Keratinocyte differentiation is regulated by the Rho and ROCK signaling pathway. Curr Biol. 2003;13(24):2185–9.

    CAS  PubMed  Google Scholar 

  91. Presland RB, Kuechle MK, Lewis SP, Fleckman P, Dale BA. Regulated expression of human filaggrin in keratinocytes results in cytoskeletal disruption, loss of cell-cell adhesion, and cell cycle arrest. Exp Cell Res. 2001;270(2):199–213.

    CAS  PubMed  Google Scholar 

  92. Rheinwald JG, Green H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature. 1977;265(5593):421–4.

    CAS  PubMed  Google Scholar 

  93. Monzon RI, McWilliams N, Hudson LG. Suppression of cornified envelope formation and type 1 transglutaminase by epidermal growth factor in neoplastic keratinocytes. Endocrinology. 1996;137(5):1727–34.

    CAS  PubMed  Google Scholar 

  94. Chen CS, Lavker RM, Rodeck U, Risse B, Jensen PJ. Use of a serum-free epidermal culture model to show deleterious effects of epidermal growth factor on morphogenesis and differentiation. J Invest Dermatol. 1995;104(1):107–12.

    CAS  PubMed  Google Scholar 

  95. Boisnic S, Ouhayoun JP, Branchet MC, Frances C, Beranger JY, Le Charpentier Y, et al. Alteration of cytokeratin expression in oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;79(2):207–15.

    CAS  PubMed  Google Scholar 

  96. Appleton BA, Loregian A, Filman DJ, Coen DM, Hogle JM. The cytomegalovirus DNA polymerase subunit UL44 forms a C clamp-shaped dimer. Mol Cell. 2004;15(2):233–44.

    CAS  PubMed  Google Scholar 

  97. Appleton BA, Brooks J, Loregian A, Filman DJ, Coen DM, Hogle JM. Crystal structure of the cytomegalovirus DNA polymerase subunit UL44 in complex with the C terminus from the catalytic subunit, Differences in structure and function relative to unliganded UL44. J Biol Chem. 2006;281(8):5224–32.

    CAS  PubMed  Google Scholar 

  98. Krishna TS, Kong XP, Gary S, Burgers PM, Kuriyan J. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell. 1994;79(7):1233–43.

    CAS  PubMed  Google Scholar 

  99. Komazin-Meredith G, Petrella RJ, Santos WL, Filman DJ, Hogle JM, Verdine GL, et al. The human cytomegalovirus UL44 C clamp wraps around DNA. Structure. 2008;16(8):1214–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Moldovan GL, Pfander B, Jentsch S. PCNA, the maestro of the replication fork. Cell. 2007;129(4):665–79.

    CAS  PubMed  Google Scholar 

  101. Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann Bot. 2011;107(7):1127–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Yu P, Huang B, Shen M, Lau C, Chan E, Michel J, et al. p15(PAF), a novel PCNA associated factor with increased expression in tumor tissues. Oncogene. 2001;20(4):484–9.

    CAS  PubMed  Google Scholar 

  103. Simpson F, Lammerts VB, Butterfield N, Bennetts JS, Bowles J, Adolphe C, et al. The PCNA-associated factor KIAA0101/p15(PAF) binds the potential tumor suppressor product p33ING1b. Exp Cell Res. 2006;312(1):73–85.

    CAS  PubMed  Google Scholar 

  104. Moro L, Dolce L, Cabodi S, Bergatto E, Boeri EE, Smeriglio M, et al. Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J Biol Chem. 2002;277(11):9405–14.

    CAS  PubMed  Google Scholar 

  105. Houben E, De Paepe K, Rogiers V. A keratinocyte’s course of life. Skin Pharmacol Physiol. 2007;20(3):122–32.

    CAS  PubMed  Google Scholar 

  106. Brakebusch C, Fassler R. beta 1 integrin function in vivo: adhesion, migration and more. Cancer Metastasis Rev. 2005;24(3):403–11.

    CAS  PubMed  Google Scholar 

  107. Brakebusch C, Grose R, Quondamatteo F, Ramirez A, Jorcano JL, Pirro A, et al. Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes. EMBO J. 2000;19(15):3990–4003.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Raghavan S, Bauer C, Mundschau G, Li Q, Fuchs E. Conditional ablation of beta1 integrin in skin, Severe defects in epidermal proliferation, basement membrane formation, and hair follicle invagination. J Cell Biol. 2000;150(5):1149–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Aszodi A, Hunziker EB, Brakebusch C, Fassler R. Beta1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis. Genes Dev. 2003;17(19):2465–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy system. Nature. 2010;466(7302):68–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Lippens S, Denecker G, Ovaere P, Vandenabeele P, Declercq W. Death penalty for keratinocytes: apoptosis versus cornification. Cell Death Differ. 2005;12 Suppl 2:1497–508.

    CAS  PubMed  Google Scholar 

  112. Polakowska RR, Haake AR. Apoptosis: the skin from a new perspective. Cell Death Differ. 1994;1(1):19–31.

    CAS  PubMed  Google Scholar 

  113. Takahashi H, Aoki N, Nakamura S, Asano K, Ishida-Yamamoto A, Iizuka H. Cornified cell envelope formation is distinct from apoptosis in epidermal keratinocytes. J Dermatol Sci. 2000;23(3):161–9.

    CAS  PubMed  Google Scholar 

  114. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741–52.

    CAS  PubMed  Google Scholar 

  115. Shaw JL, Smith CR, Diamandis EP. Proteomic analysis of human cervico-vaginal fluid. J Proteome Res. 2007;6(7):2859–65.

    CAS  PubMed  Google Scholar 

  116. Stastna M, Behrens A, McDonnell PJ, Van Eyk JE. Analysis of protein composition of rabbit aqueous humor following two different cataract surgery incision procedures using 2-DE and LC-MS/MS. Proteome Sci. 2011;9(1):8.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the Deutsche Forschungsgemeinschaft to J.-M. Schröder (Schr 305⁄6–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens-Michael Schröder PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schröder, JM., Hansmann, B. (2014). Filaggrin-2. In: Thyssen, J., Maibach, H. (eds) Filaggrin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54379-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54379-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54378-4

  • Online ISBN: 978-3-642-54379-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics