Skip to main content

Traumatic Brain Injury: Nuclear Medicine Neuroimaging

  • Chapter
  • First Online:
PET and SPECT in Neurology

Abstract

This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET in the TBI acute phase appeared to be more useful in those patients in whom structural neuroimages fail to show abnormalities explaining their neurological state. 15O2-PET is also a solid technique for research in acute TBI, but in contrast to 18F-FDG PET it is not widely available due to its high cost. In the chronic TBI phase, most 18F-FDG PET studies converge to identify a diffuse cortical–subcortical hypometabolism involving key regions for cognitive function. Recent studies suggest the usefulness of 18F-FDG PET for the evaluation of therapeutic interventions in chronic TBI patients with cognitive deficits. In recent years, interest in studying cell-specific processes is growing. The use of radioligands as markers of neuroinflammation could become attractive for detecting secondary damage and serve for the evaluation of different therapeutic approaches. SPECT advances also make this technique a valid alternative for the study of TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AChE:

Acetylcholinesterase

BP:

Binding potential

BPND :

Non-displaceable binding potential

BZR:

Central-type benzodiazepine receptor

C-(R)-PK11195:

1-[2-chlorophenyl]-N-methyl-N-[1-methylpropyl]-3-isoquinoline carboxamide

CBF:

Cerebral blood flow

C-MP4A:

[Methyl-11C] N-methylpiperidyl-4-acetate

CMRglc:

Cerebral metabolic rate of glucose

CMRO2 :

Cerebral metabolic rate of oxygen

C-NMSP:

11C-N-methylspiperone

CT:

Computed tomography

D2 :

Dopamine receptor type 2

DAI:

Diffuse axonal injury

DTI:

diffusion tensor imaging

FIQ:

Full-scale intelligence quotient

FMZ:

Flumazenil

GCS:

Glasgow Coma Scale

GM:

Gray matter

GOS:

Glasgow Outcome Scale

L/N ratio:

Lesion-to-normal contralateral ratio

MRI:

Magnetic resonance imaging

NSC:

Neural stem cell

OEF:

Oxygen extraction fraction

OGR:

Oxygen-to-glucose metabolic ratio

ROI:

Regions of interest

SPM:

Statistical parametric mapping

TBI:

Traumatic brain injury

TSPO:

Translocator protein

V/C ratio:

Vermis to cerebellum ratio

WM:

White matter

References

  • Abate M, Trivedi M, Fryer TD et al (2008) Early derangements in oxygen and glucose metabolism following head injury: the ischemic penumbra and pathophysiological heterogeneity. Neurocrit Care 9:319–325

    Article  CAS  PubMed  Google Scholar 

  • Alavi A (1989) Functional and anatomic studies of head injury. J Neuropsychiatry Clin Neurosci 1:S45–S50

    CAS  PubMed  Google Scholar 

  • Alavi A, Mirot A, Newberg A et al (1997) Fluorine-18-FDG evaluation of crossed cerebellar diaschisis in head injury. J Nucl Med 38:1717–1720

    CAS  PubMed  Google Scholar 

  • Antunes IF, Doorduin J, Haisma HJ et al (2012) 18F-FEAnGA for PET of β-glucuronidase activity in neuroinflammation. J Nucl Med 53:1–8. doi:10.2967/jnumed.111.096388

    Article  Google Scholar 

  • Bassett DS, Bullmore ET (2009) Human brain networks in health and disease. Curr Opin Neurol 22:340–347

    Article  PubMed Central  PubMed  Google Scholar 

  • Belanger HG, Vanderploeg RD, Curtiss G et al (2007) Recent neuroimaging techniques in mild traumatic brain injury. J Neuropsychiatry Clin Neurosci 19:5–20

    Article  PubMed  Google Scholar 

  • Bergsneider M, Hovda DA, Shalmon E et al (1997) Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg 86:241–251

    Article  CAS  PubMed  Google Scholar 

  • Bergsneider M, Hovda DA, Lee SM et al (2000) Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury. J Neurotrauma 17:389–401

    Article  CAS  PubMed  Google Scholar 

  • Bergsneider M, Hovda DA, McArthur DL et al (2001) Metabolic recovery following human traumatic brain injury based on FDG-PET: time course and relationship to neurological disability. J Head Trauma Rehabil 16:135–148

    Article  CAS  PubMed  Google Scholar 

  • Boellaard R, Turkheimer F, Hinz R et al (2008) Performance of a modified Supervised cluster algorithm for extracting reference region input function from [11C](R)-PK11195 brain PET studies. IEEE Nucl Sci Symp Conf Rec 5400–5402

    Google Scholar 

  • Bullock R, Chestnut RM, Clifton G et al (2007) Guidelines for the management of severe traumatic brain injury, 3rd ed. J Neurotrauma 24(Suppl 1):S26–S31

    Google Scholar 

  • Chauveau F, Boutin H, Van Camp N et al (2011) In vivo imaging of neuroinflammation in the rodent brain with [(11)C]SSR180575, a novel indoleacetamide radioligand of the translocator protein (18 kDa). Eur J Nucl Med Mol Imaging 38:509–514

    Article  CAS  PubMed  Google Scholar 

  • Chen MK, Guilarte TR (2008) Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 118:1–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cihangiroglu M, Ramsey RG, Dohrmann GJ (2002) Brain injury: analysis of imaging modalities. Neurol Res J24:7–18

    Article  Google Scholar 

  • Coles J, Fryer T (2004) 15O PET imaging of cerebral metabolism and ischaemia following traumatic brain injury: defining the ischaemic brain volume. J Cereb Blood Flow Metab 24:191–201

    Article  PubMed  Google Scholar 

  • Coles JP, Fryer TD, Smielewski P et al (2004a) Incidence and mechanisms of cerebral ischemia in early clinical head injury. J Cereb Blood Flow Metab 24:202–211

    Article  PubMed  Google Scholar 

  • Coles JP, Steiner LA, Johnston AJ et al (2004b) Does induced hypertension reduce cerebral ischaemia within the traumatized human brain? Brain 127:2479–2490

    Article  PubMed  Google Scholar 

  • Coles JP, Fryer TD, Coleman MR et al (2006) Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med 35:568–578

    Article  Google Scholar 

  • Cunningham AS, Salvador R, Coles JP et al (2005) Physiological thresholds for irreversible tissue damage in contusional regions following traumatic brain injury. Brain 128:1931–1942

    Article  CAS  PubMed  Google Scholar 

  • Dagal A, Lam AM (2011) Cerebral blood flow and the injured brain: how should we monitor and manipulate it? Curr Opin Anaesthesiol 24:131–137

    Article  PubMed  Google Scholar 

  • Davalos DB, Bennett TL (2002) A review of the use of single-photon emission computerized tomography as a diagnostic tool in mild traumatic brain injury. Appl Neuropsychol 9:92–105

    Article  PubMed  Google Scholar 

  • Diringer MN, Aiyagari V, Zazulia AR et al (2007) Effect of hyperoxia on cerebral metabolic rate for oxygen measured using positron emission tomography in patients with acute severe head injury. J Neurosurg 106:526–529

    Article  PubMed  Google Scholar 

  • Diringer MN, Scalfani M, Zazulia A et al (2011) Effect of mannitol on cerebral blood volume in patients with head injury. Neurosurgery. doi:10.1227/NEU.0b013e3182417bc2

    Google Scholar 

  • Donnemiller E, Brenneis C, Wissel J et al (2000) Impaired dopaminergic neurotransmission in patients with traumatic brain injury: a SPET study using (123)I-beta-CIT and (123)I-IBZM. Eur J Nucl Med Mol Imaging 27:1410–1414

    Article  CAS  Google Scholar 

  • Faul M, Xu L, Wald MM et al (2010) Traumatic brain injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002–2006, Atlanta (GA). http://cdc.gov/TraumaticBrainInjury

  • Folkersma H, Boellaard R, Yaqub M et al (2011) Widespread and prolonged increase in (R)-(11)C-PK11195 binding after traumatic brain injury. J Nucl Med 52:1235–1239

    Article  PubMed  Google Scholar 

  • Fontaine A, Azouvi P, Remy P et al (1999) Functional anatomy of neuropsychological deficits after severe traumatic brain injury. Neurology 53:1963–1968

    Article  CAS  PubMed  Google Scholar 

  • Frey LC (2003) Epidemiology of posttraumatic epilepsy: a critical review. Epilepsia 44:11–17

    Article  PubMed  Google Scholar 

  • Friston KJ (1994) Statistical parametric mapping. In: Thatcher RW, Hallet M, Zeffiro T, John ER, Huerta M (eds) Functional neuroimaging. Academic, New York

    Google Scholar 

  • Garcia-Panach J, Lull N, Jose Lull J et al (2011) A voxel-based analysis of FDG-PET in traumatic brain injury: regional metabolism and relationship between the thalamus and cortical areas. J Neurotrauma 28:1707–1717

    Article  PubMed  Google Scholar 

  • Geeraerts T, Coles JP, Aigbirhio FI et al (2011) Validation of reference tissue modelling for [(11)C]flumazenil positron emission tomography following head injury. Ann Nucl Med 25:396–405

    Article  PubMed  Google Scholar 

  • Gentleman SM, Leclercq PD, Moyes L et al (2004) Long-term intracerebral inflammatory response after traumatic brain injury. Forensic Sci Int 146:97–104

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Hutchinson PJ, Fryer T et al (2002) Measurement of brain tissue oxygenation performed using positron emission tomography scanning to validate a novel monitoring method. J Neurosurg 96:263–268

    Article  PubMed  Google Scholar 

  • Hattori N, Huang SC, Wu HM et al (2003) Correlation of regional metabolic rates of glucose with Glasgow Coma Scale after traumatic brain injury. J Nucl Med 44:1709–1716

    PubMed  Google Scholar 

  • Hattori N, Huang SC, Wu HM et al (2004) Acute changes in regional cerebral 18F-FDG kinetics in patients with traumatic brain injury. J Nucl Med 45:775–783

    PubMed  Google Scholar 

  • Hattori N, Swan M, Stobbe GA et al (2009) Differential SPECT activation patterns associated with PASAT performance may indicate frontocerebellar functional dissociation in chronic mild traumatic brain injury. J Nucl Med 50:1054–1061

    Article  PubMed  Google Scholar 

  • Hunter JV, Wilde EA, Tong KA et al (2012) Emerging imaging tools for use with traumatic. Brain injury research. J Neurotrauma 29:654–671

    Article  PubMed Central  PubMed  Google Scholar 

  • Hutchinson PJ, Gupta AK, Fryer TF et al (2002) Correlation between cerebral blood flow, substrate delivery, and metabolism in head injury: a combined microdialysis and triple oxygen positron emission tomography study. J Cereb Blood Flow Metab 22:735–745

    Article  PubMed  Google Scholar 

  • Hutchinson PJ, O’Connell MT, Seal A et al (2009) A combined microdialysis and FDG-PET study of glucose metabolism in head injury. Acta Neurochir (Wien) 151:51–61

    Article  Google Scholar 

  • Johnston AJ, Steiner LA, Coles JP et al (2005) Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury. Crit Care Med 33:189–195

    Article  PubMed  Google Scholar 

  • Kato T, Nakayama N, Yasokawa Y et al (2007) Statistical image analysis of cerebral glucose metabolism in patients with cognitive impairment following diffuse traumatic brain injury. J Neurotrauma 24:919–926

    Article  PubMed  Google Scholar 

  • Kawai N, Nakamura T, Tamiya T et al (2008) Metabolic disturbance without brain ischemia in traumatic brain injury: a positron emission tomography study. Acta Neurochir Suppl 102:241–245

    Article  PubMed  Google Scholar 

  • Kawai N, Maeda Y, Kudomi N et al (2010) Focal neuronal damage in patients with neuropsychological impairment after diffuse traumatic brain injury: evaluation using (11)C-flumazenil positron emission tomography with statistical image analysis. J Neurotrauma 27:2131–2138

    Article  PubMed  Google Scholar 

  • Kim YW, Kim DY, Shin JC et al (2009) The changes of cortical metabolism associated with the clinical response to donepezil therapy in traumatic brain injury. Clin Neuropharmacol 32:63–68

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Shin JC, Ys A (2010) Changes in cerebral glucose metabolism in patients with posttraumatic cognitive impairment after memantine therapy: a preliminary study. Ann Nucl Med 24:363–369

    Article  CAS  PubMed  Google Scholar 

  • Kraus MF, Smith GS, Butters M et al (2005) Effects of the dopaminergic agent and NMDA receptor antagonist amantadine on cognitive function, cerebral glucose metabolism and D2 receptor availability in chronic traumatic brain injury: a study using positron emission tomography (PET). Brain Inj 19:471–479

    Article  CAS  PubMed  Google Scholar 

  • Kubal WS (2012) Updated imaging of traumatic brain injury. Radiol Clin N Am 50:15–41

    Article  PubMed  Google Scholar 

  • Langfitt TW, Obrist WD, Alavi A et al (1986) Computerized tomography, magnetic resonance imaging, and positron emission tomography in the study of brain trauma. J Neurosurg 64:760–767

    Article  CAS  PubMed  Google Scholar 

  • Ley E, Park R (2010) In vivo effect of propanolol dose and timing on cerebral perfusion after traumatic brain injury. J Trauma 68:353–356

    Article  CAS  PubMed  Google Scholar 

  • Ley EJ, Scehnet J, Park R et al (2009) The in vivo effect of propranolol on cerebral perfusion and hypoxia after traumatic brain injury. J Trauma 66:154–161

    Article  CAS  PubMed  Google Scholar 

  • Liu YR, Cardamone L, Hogan R et al (2010) Progressive metabolic and structural cerebral perturbations after traumatic brain injury: an in vivo imaging study in the rat. J Nucl Med 51:1788–1795

    Article  PubMed  Google Scholar 

  • Lull N, Noe E, Jose Lull J et al (2010) Voxel-based statistical analysis of thalamic glucose metabolism in traumatic brain injury: relationship with consciousness and cognition. Brain Inj 24:1098–1107

    Article  PubMed  Google Scholar 

  • Lupi A, Bertagnoni G, Salgarello M et al (2007) Cerebellar vermis relative hypermetabolism: an almost constant PET finding in an injured brain. Clin Nucl Med 32:445–451

    Article  PubMed  Google Scholar 

  • Lupi A, Bertagnoni G, Borghero A et al (2011) Relative hypermetabolism of vermis cerebelli in traumatic brain injured patients studied with 18FDG PET: a descriptor of brain damage and a possible predictor of outcome. Curr Radiopharm 4:167–175

    Article  CAS  PubMed  Google Scholar 

  • Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728–741

    Article  PubMed  Google Scholar 

  • Marklund N, Sihver S, Hovda D et al (2009) Increased cerebral uptake of [18F]fluoro-deoxyglucose but not [1-14c]glucose early following traumatic brain injury in rats. J Neurotrauma 26:1281–1293

    Article  PubMed  Google Scholar 

  • Mattner F, Bandin DL, Staykova M et al (2011) Evaluation of [(123)I]-CLINDE as a potent SPECT radiotracer to assess the degree of astroglia activation in cuprizone-induced neuroinflammation. Eur J Nucl Med Mol Imaging 38:1516–1528

    Article  PubMed  Google Scholar 

  • McKee AC, Cantu RC, Nowinski CJ et al (2009) Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 68:709–735

    Article  PubMed Central  PubMed  Google Scholar 

  • Medina LS, Blackmore CC, Applegate KE et al (2011) Principles of evidence-based imaging. In: Medina LS, Blackmore CC (eds) Evidence-based imaging: improving the quality of imaging in patient care. Springer, New York

    Chapter  Google Scholar 

  • Menon DKP, Coles JPP, Gupta AKF et al (2004) Diffusion limited oxygen delivery following head injury. Crit Care Med 32:1384–1390

    Article  PubMed  Google Scholar 

  • Minoshima S, Koeppe RA, Frey KA et al (1994) Stereotaxic pet atlas of the human brain – aid for visual interpretation of functional brain images. J Nucl Med 35:949–954

    CAS  PubMed  Google Scholar 

  • Nagamoto-Combs K, Mcneal DW, Morecraft RJ et al (2007) Prolonged microgliosis in the rhesus monkey central nervous system after traumatic brain injury. J Neurotrauma 24:1719–1742

    Article  PubMed  Google Scholar 

  • Nagamoto-Combs K, Morecraft RJ, Darling WG et al (2010) Long-term gliosis and molecular changes in the cervical spinal cord of the rhesus monkey after traumatic brain injury. J Neurotrauma 27:565–585

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakashima T, Nakayama N, Miwa K et al (2007) Focal brain glucose hypometabolism in patients with neuropsychologic deficits after diffuse axonal injury. AJNR Am J Neuroradiol 28:236–242

    CAS  PubMed  Google Scholar 

  • Nakayama N, Okumura A, Shinoda J et al (2006) Relationship between regional cerebral metabolism and consciousness disturbance in traumatic diffuse brain injury without large focal lesions: an FDG-PET study with statistical parametric mapping analysis. J Neurol Neurosurg Psychiatry 77:856–862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nortje J, Coles JP, Timofeev I et al (2008) Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: preliminary findings. Crit Care Med 36:273–281

    Article  CAS  PubMed  Google Scholar 

  • O’Connell MT, Seal A, Nortje J et al (2005) Glucose metabolism in traumatic brain injury: a combined microdialysis and [(18)F]-2-fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) study. Acta Neurochir Suppl 95:165–168

    Article  PubMed  Google Scholar 

  • Östberg A, Virta J, Rinne JO et al (2011) Cholinergic dysfunction after traumatic brain injury: preliminary findings from a PET study. Neurology 76:1046–1050

    Article  PubMed  Google Scholar 

  • Park E, Bell JD, Baker AJ (2008) Traumatic brain injury: can the consequences be stopped? CMAJ 178:1163–1170

    Article  PubMed Central  PubMed  Google Scholar 

  • Peskind ER, Petrie EC, Cross DJ et al (2011) Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war Veterans with persistent post-concussive symptoms. Neuroimage 54(Suppl 1):S76–S82

    Article  PubMed Central  PubMed  Google Scholar 

  • Pifarré P, Cuberas G, Benejam B et al (2011) Cerebral blood flow measurement in the assessment of post-traumatic cerebral contusions. Open J Radiol 1:21–27

    Article  Google Scholar 

  • Provenzale JM (2010) Imaging of traumatic brain injury: a review of the recent medical literature. AJR Am J Roentgenol 194:16–19

    Article  PubMed  Google Scholar 

  • Provenzano FA, Jordan B, Tikofsky RS et al (2010) F-18 FDG PET imaging of chronic traumatic brain injury in boxers: a statistical parametric analysis. Nucl Med Commun 31:952–957

    Article  PubMed  Google Scholar 

  • Pulsipher DTP, Campbell RAP, Thoma RP et al (2011) A critical review of neuroimaging applications in sports concussion. Curr Sports Med Rep 10:14–20

    Article  PubMed  Google Scholar 

  • Ramlackhansingh AF, Brooks DJ, Greenwood RJ et al (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70:374–383

    Article  PubMed  Google Scholar 

  • Rao N, Turski PA, Polcyn RE et al (1984) F-18 positron emission computed-tomography in closed head-injury. Arch Phys Med Rehabil 65:780–785

    CAS  PubMed  Google Scholar 

  • Risdall JE, Menon DK (2011) Traumatic brain injury. Phil Trans R Soc 366:241–250

    Article  Google Scholar 

  • Robertson C (2004) Mitochondrial dysfunction contributes to cell death following traumatic brain injury in adult and immature animals. J Bioenerg Biomembr 36:363–368

    Article  CAS  PubMed  Google Scholar 

  • Shiga T, Ikoma K, Katoh C et al (2006) Loss of neuronal integrity: a cause of hypometabolism in patients with traumatic brain injury without MRI abnormality in the chronic stage. Eur J Nucl Med Mol Imaging 33:817–822

    Article  PubMed  Google Scholar 

  • Stryke J, Stalnacke B, Sojka P et al (2007) Traumatic brain injuries in a well-defined population: epidemiological aspects and severity. J Neurotrauma 24:1425–1436

    Article  Google Scholar 

  • Tagliaferri F, Compagnone C, Korsic M et al (2006) A systematic review of brain injury epidemiology in Europe. Acta Neurochir (Wien) 148:255–268

    Article  CAS  Google Scholar 

  • Tenjin H, Ueda S, Mizukawa N et al (1990) Positron emission tomographic studies on cerebral hemodynamics in patients with cerebral contusion. Neurosurgery 26:971–979

    Article  CAS  PubMed  Google Scholar 

  • Tikofsky RS (2010) Traumatic brain injury: SPECT and PET. In: Van Heertum RL, Tikofsky RS, Ichise M (eds) Functional cerebral SPECT and PET imaging, 4th edn. Wolters Kluwer Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Tong KA, Oyoyo UE, Holshouser BA et al (2011) Neuroimaging for traumatic brain injury. In: Medina LS, Blackmore CC (eds) Evidence-based imaging: improving the quality of imaging in patient care. Springer, New York

    Google Scholar 

  • Vespa P, Bergsneider M, Hattori N et al (2005) Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 25:763–774

    Article  CAS  PubMed  Google Scholar 

  • WHO/OMS (2009) Global status report on road safety: time for action. World Health Organisation, Geneva, http://whqlibdoc.who.int/publications/2009/9789241563840_eng.pdf

    Google Scholar 

  • Wu HM, Huang SC, Hattori N et al (2004a) Selective metabolic reduction in gray matter acutely following human traumatic brain injury. J Neurotrauma 21:149–161

    Article  PubMed  Google Scholar 

  • Wu HM, Huang SC, Hattori N et al (2004b) Subcortical white matter metabolic chances remote from focal hemorrhagic lesions suggest diffuse injury after human traumatic brain injury. Neurosurgery 55:1306–1317

    Article  PubMed  Google Scholar 

  • Xu Y, McArthur DL, Alger JR et al (2010) Early nonischemic oxidative metabolic dysfunction leads to chronic brain atrophy in traumatic brain injury. J Cereb Blood Flow Metab 30:883–894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaki T, Yoshino E, Fujimoto M et al (1996) Chronological positron emission tomographic study of severe diffuse brain injury in the chronic stage. J Trauma 40:50–56

    Article  CAS  PubMed  Google Scholar 

  • Zasler ND, Katz D, Zafonte RD (2007) Brain injury medicine: principles and practice. Demos Medical Publishing, New York

    Google Scholar 

  • Zhang H, Zheng X, Yang X et al (2008) 11C-NMSP/18F-FDG microPET to monitor neural stem cell transplantation in a rat model of traumatic brain injury. Eur J Nucl Med Mol Imaging 35:1699–1708

    Article  PubMed  Google Scholar 

  • Zhang J, Mitsis EM, Chu K et al (2010) Statistical parametric mapping and cluster counting analysis of [(18)F] FDG-PET imaging in traumatic brain injury. J Neurotrauma 27:35–49

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Sánchez-Catasús .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sánchez-Catasús, C.A., Vállez García, D., Le Riverend Morales, E., Sánchez, R.G., Dierckx, R.A.J.O. (2014). Traumatic Brain Injury: Nuclear Medicine Neuroimaging. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., Leenders, K. (eds) PET and SPECT in Neurology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54307-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54307-4_45

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54306-7

  • Online ISBN: 978-3-642-54307-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics