Skip to main content

Abstract

TRPM4 is a Ca2+-activated nonselective cation channel. The channel is activated by an increase of intracellular Ca2+ and is regulated by several factors including temperature and Pi(4,5)P2. TRPM4 allows Na+ entry into the cell upon activation, but is completely impermeable to Ca2+. Unlike TRPM5, its closest relative in the transient receptor potential family, TRPM4 proteins are widely expressed in the body. Currents with properties that are reminiscent of TRPM4 have been described in a variety of tissues since the advent of the patch clamp technology, but their physiological role is only beginning to be clarified with the increasing characterization of knockout mouse models for TRPM4. Furthermore, mutations in the TRPM4 gene have been associated with cardiac conduction disorders in human patients. This review aims to overview the currently available data on the functional properties of TRPM4 and the current understanding of its physiological role in healthy and diseased tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed E, Labelle D, Martineau C, Loghin A, Moreau R (2009) Expression of transient receptor potential (TRP) channels in human and murine osteoblast-like cells. Mol Membr Biol 26:146–158

    CAS  PubMed  Google Scholar 

  • Amarouch MY, Syam N, Abriel H (2013) Biochemical, single-channel, whole-cell patch clamp, and pharmacological analyses of endogenous TRPM4 channels in HEK293 cells. Neurosci Lett 541:105–110

    CAS  PubMed  Google Scholar 

  • Armisen R, Marcelain K, Simon F, Tapia JC, Toro J, Quest AF, Stutzin A (2011) TRPM4 enhances cell proliferation through up-regulation of the beta-catenin signaling pathway. J Cell Physiol 226:103–109

    CAS  PubMed  Google Scholar 

  • Baker D, Gerritsen W, Rundle J, Amor S (2011) Critical appraisal of animal models of multiple sclerosis. Mult Scler 17:647–657

    PubMed  Google Scholar 

  • Barbet G, Demion M, Moura IC, Serafini N, Leger T, Vrtovsnik F, Monteiro RC, Guinamard R, Kinet JP, Launay P (2008) The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat Immunol 9:1148–1156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Becerra A, Echeverria C, Varela D, Sarmiento D, Armisen R, Nunez-Villena F, Montecinos M, Simon F (2011) Transient receptor potential melastatin 4 inhibition prevents lipopolysaccharide-induced endothelial cell death. Cardiovasc Res 91:677–684

    CAS  PubMed  Google Scholar 

  • Brayden JE, Earley S, Nelson MT, Reading S (2008) Transient receptor potential (TRP) channels, vascular tone and autoregulation of cerebral blood flow. Clin Exp Pharmacol Physiol 35:1116–1120

    CAS  PubMed  Google Scholar 

  • Brink PA, Ferreira A, Moolman JC, Weymar HW, van der Merwe PL, Corfield VA (1995) Gene for progressive familial heart block type I maps to chromosome 19q13. Circulation 91:1633–1640

    CAS  PubMed  Google Scholar 

  • Cheng H, Beck A, Launay P, Gross SA, Stokes AJ, Kinet JP, Fleig A, Penner R (2007) TRPM4 controls insulin secretion in pancreatic beta-cells. Cell Calcium 41:51–61

    CAS  PubMed  Google Scholar 

  • Colquhoun D, Neher E, Reuter H, Stevens CF (1981) Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294:752–754

    CAS  PubMed  Google Scholar 

  • Colsoul B, Schraenen A, Lemaire K, Quintens R, Van Lommel L, Segal A, Owsianik G, Talavera K, Voets T, Margolskee RF et al (2010) Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5-/- mice. Proc Natl Acad Sci USA 107:5208–5213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crnich R, Amberg GC, Leo MD, Gonzales AL, Tamkun MM, Jaggar JH, Earley S (2010) Vasoconstriction resulting from dynamic membrane trafficking of TRPM4 in vascular smooth muscle cells. Am J Physiol Cell Physiol 299:C682–C694

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crowder EA, Saha MS, Pace RW, Zhang H, Prestwich GD, Del Negro CA (2007) Phosphatidylinositol 4,5-bisphosphate regulates inspiratory burst activity in the neonatal mouse preBotzinger complex. J Physiol 582:1047–1058

    CAS  PubMed Central  PubMed  Google Scholar 

  • Csanady L, Adam-Vizi V (2003) Ca(2+)- and voltage-dependent gating of Ca(2+)- and ATP-sensitive cationic channels in brain capillary endothelium. Biophys J 85:313–327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Del Negro CA, Morgado-Valle C, Hayes JA, Mackay DD, Pace RW, Crowder EA, Feldman JL (2005) Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. J Neurosci 25:446–453

    PubMed  Google Scholar 

  • Demion M, Bois P, Launay P, Guinamard R (2007) TRPM4, a Ca2 + -activated nonselective cation channel in mouse sino-atrial node cells. Cardiovasc Res 73:531–538

    CAS  PubMed  Google Scholar 

  • Dwyer L, Rhee PL, Lowe V, Zheng H, Peri L, Ro S, Sanders KM, Koh SD (2011) Basally activated nonselective cation currents regulate the resting membrane potential in human and monkey colonic smooth muscle. Am J Physiol Gastrointest Liver Physiol 301:G287–G296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Earley S, Waldron BJ, Brayden JE (2004) Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res 95:922–929

    CAS  PubMed  Google Scholar 

  • Earley S, Straub SV, Brayden JE (2007) Protein kinase C regulates vascular myogenic tone through activation of TRPM4. Am J Physiol Heart Circ Physiol 292:H2613–H2622

    CAS  PubMed  Google Scholar 

  • Egorov AV, Hamam BN, Fransen E, Hasselmo ME, Alonso AA (2002) Graded persistent activity in entorhinal cortex neurons. Nature 420:173–178

    CAS  PubMed  Google Scholar 

  • El-Sherif Y, Wieraszko A, Banerjee P, Penington NJ (2001) ATP modulates Na + channel gating and induces a non-selective cation current in a neuronal hippocampal cell line. Brain Res 904:307–317

    CAS  PubMed  Google Scholar 

  • Eto W, Hirano K, Hirano M, Nishimura J, Kanaide H (2003) Intracellular alkalinization induces Ca2+ influx via non-voltage-operated Ca2+ channels in rat aortic smooth muscle cells. Cell Calcium 34:477–484

    CAS  PubMed  Google Scholar 

  • Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S (2006) Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 26:159–178

    CAS  PubMed  Google Scholar 

  • Gerzanich V, Woo SK, Vennekens R, Tsymbalyuk O, Ivanova S, Ivanov A, Geng Z, Chen Z, Nilius B, Flockerzi V et al (2009) De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat Med 15:185–191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gogelein H, Pfannmuller B (1989) The nonselective cation channel in the basolateral membrane of rat exocrine pancreas. Inhibition by 3',5-dichlorodiphenylamine-2-carboxylic acid (DCDPC) and activation by stilbene disulfonates. Pflugers Arch 413:287–298

    CAS  PubMed  Google Scholar 

  • Gonzales AL, Earley S (2012) Endogenous cytosolic Ca(2+) buffering is necessary for TRPM4 activity in cerebral artery smooth muscle cells. Cell Calcium 51:82–93

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzales AL, Amberg GC, Earley S (2010a) Ca2+ release from the sarcoplasmic reticulum is required for sustained TRPM4 activity in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 299:C279–C288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzales AL, Garcia ZI, Amberg GC, Earley S (2010b) Pharmacological inhibition of TRPM4 hyperpolarizes vascular smooth muscle. Am J Physiol Cell Physiol 299:C1195–C1202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grand T, Demion M, Norez C, Mettey Y, Launay P, Becq F, Bois P, Guinamard R (2008) 9-phenanthrol inhibits human TRPM4 but not TRPM5 cationic channels. Br J Pharmacol 153:1697–1705

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gray MA, Argent BE (1990) Non-selective cation channel on pancreatic duct cells. Biochim Biophys Acta 1029:33–42

    CAS  PubMed  Google Scholar 

  • Griffiths IR, Burns N, Crawford AR (1978) Early vascular changes in the spinal grey matter following impact injury. Acta Neuropathol 41:33–39

    CAS  PubMed  Google Scholar 

  • Guinamard R, Bois P (2007) Involvement of transient receptor potential proteins in cardiac hypertrophy. Biochim Biophys Acta 1772:885–894

    CAS  PubMed  Google Scholar 

  • Guinamard R, Chatelier A, Demion M, Potreau D, Patri S, Rahmati M, Bois P (2004) Functional characterization of a Ca(2+)-activated non-selective cation channel in human atrial cardiomyocytes. J Physiol 558:75–83

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guinamard R, Demion M, Magaud C, Potreau D, Bois P (2006) Functional expression of the TRPM4 cationic current in ventricular cardiomyocytes from spontaneously hypertensive rats. Hypertension 48:587–594

    CAS  PubMed  Google Scholar 

  • Guinamard R, Simard C, Del Negro C (2013) Flufenamic acid as an ion channel modulator. Pharmacol Ther 138:272–284

    CAS  PubMed  Google Scholar 

  • Guth L, Zhang Z, Steward O (1999) The unique histopathological responses of the injured spinal cord. Implications for neuroprotective therapy. Ann N Y Acad Sci 890:366–384

    CAS  PubMed  Google Scholar 

  • Halonen J, Nedergaard J (2002) Adenosine 5'-monophosphate is a selective inhibitor of the brown adipocyte nonselective cation channel. J Membr Biol 188:183–197

    CAS  PubMed  Google Scholar 

  • Hille B (1992) Ionic channels of excitable membranes, 2nd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Hof T, Simard C, Rouet R, Salle L, Guinamard R (2013) Implication of the TRPM4 nonselective cation channel in mammalian sinus rhythm. Heart Rhythm 10(11):1683–1689

    PubMed  Google Scholar 

  • Hurwitz CG, Hu VY, Segal AS (2002) A mechanogated nonselective cation channel in proximal tubule that is ATP sensitive. Am J Physiol Renal Physiol 283:F93–F104

    CAS  PubMed  Google Scholar 

  • Kaestner L, Bernhardt I (2002) Ion channels in the human red blood cell membrane: their further investigation and physiological relevance. Bioelectrochemistry 55:71–74

    CAS  PubMed  Google Scholar 

  • Kim CJ, Weir BK, Macdonald RL, Zhang H (1998) Erythrocyte lysate releases Ca2+ from IP3-sensitive stores and activates Ca(2+)-dependent K + channels in rat basilar smooth muscle cells. Neurol Res 20:23–30

    CAS  PubMed  Google Scholar 

  • Kim YS, Kang E, Makino Y, Park S, Shin JH, Song H, Launay P, Linden DJ (2013) Characterizing the conductance underlying depolarization-induced slow current in cerebellar Purkinje cells. J Neurophysiol 109:1174–1181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kruse M, Schulze-Bahr E, Corfield V, Beckmann A, Stallmeyer B, Kurtbay G, Ohmert I, Brink P, Pongs O (2009) Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Invest 119:2737–2744

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuerten S, Lehmann PV (2011) The immune pathogenesis of experimental autoimmune encephalomyelitis: lessons learned for multiple sclerosis? J Interferon Cytokine Res 31:907–916

    CAS  PubMed  Google Scholar 

  • Kunert-Keil C, Bisping F, Kruger J, Brinkmeier H (2006) Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics 7:159

    PubMed Central  PubMed  Google Scholar 

  • Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460:525–542

    CAS  PubMed  Google Scholar 

  • Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2+ -activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397–407

    CAS  PubMed  Google Scholar 

  • Launay P, Cheng H, Srivatsan S, Penner R, Fleig A, Kinet JP (2004) TRPM4 regulates calcium oscillations after T cell activation. Science 306:1374–1377

    CAS  PubMed  Google Scholar 

  • Liman ER (2003) Regulation by voltage and adenine nucleotides of a Ca2 + -activated cation channel from hamster vomeronasal sensory neurons. J Physiol 548:777–787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Little SC, Mohler PJ (2013) TRPM4 modulates sinus node diastolic depolarization. Heart Rhythm 10(11):1690–1691

    PubMed  Google Scholar 

  • Liu H, El Zein L, Kruse M, Guinamard R, Beckmann A, Bozio A, Kurtbay G, Megarbane A, Ohmert I, Blaysat G et al (2010) Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circ Cardiovasc Genet 3:374–385

    CAS  PubMed  Google Scholar 

  • Liu H, Chatel S, Simard C, Syam N, Salle L, Probst V, Morel J, Millat G, Lopez M, Abriel H et al (2013) Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel. PLoS One 8:e54131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Logothetis DE, Petrou VI, Adney SK, Mahajan R (2010) Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch 460:321–341

    CAS  PubMed  Google Scholar 

  • Magistretti J, Alonso A (2002) Fine gating properties of channels responsible for persistent sodium current generation in entorhinal cortex neurons. J Gen Physiol 120:855–873

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malhotra S, Castillo J, Negrotto L, Merino-Zamorano C, Montaner J, Vidal-Jordana A, Montalban X, Comabella M (2013) TRPM4 mRNA expression levels in peripheral blood mononuclear cells from multiple sclerosis patients. J Neuroimmunol 261:146–148

    CAS  PubMed  Google Scholar 

  • Mangoni ME, Nargeot J (2008) Genesis and regulation of the heart automaticity. Physiol Rev 88:919–982

    CAS  PubMed  Google Scholar 

  • Marigo V, Courville K, Hsu WH, Feng JM, Cheng H (2008) TRPM4 impacts Ca(2+) signals during agonist-induced insulin secretion in pancreatic beta-cells. Mol Cell Endocrinol 299:194–203

    PubMed  Google Scholar 

  • Maruyama Y, Petersen OH (1984) Single calcium-dependent cation channels in mouse pancreatic acinar cells. J Membr Biol 81:83–87

    CAS  PubMed  Google Scholar 

  • Mathar I, Vennekens R, Meissner M, Kees F, Van der Mieren G, Camacho Londono JE, Uhl S, Voets T, Hummel B, van den Bergh A et al (2010) Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice. J Clin Invest 120:3267–3279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mironov SL (2008) Metabotropic glutamate receptors activate dendritic calcium waves and TRPM channels which drive rhythmic respiratory patterns in mice. J Physiol 586:2277–2291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyoshi H, Yamaoka K, Garfield RE, Ohama K (2004) Identification of a non-selective cation channel current in myometrial cells isolated from pregnant rats. Pflugers Arch 447:457–464

    CAS  PubMed  Google Scholar 

  • Morita H, Honda A, Inoue R, Ito Y, Abe K, Nelson MT, Brayden JE (2007) Membrane stretch-induced activation of a TRPM4-like nonselective cation channel in cerebral artery myocytes. J Pharmacol Sci 103:417–426

    CAS  PubMed  Google Scholar 

  • Mrejeru A, Wei A, Ramirez JM (2011) Calcium-activated non-selective cation currents are involved in generation of tonic and bursting activity in dopamine neurons of the substantia nigra pars compacta. J Physiol 589:2497–2514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murakami M, Xu F, Miyoshi I, Sato E, Ono K, Iijima T (2003) Identification and characterization of the murine TRPM4 channel. Biochem Biophys Res Commun 307:522–528

    CAS  PubMed  Google Scholar 

  • Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ (1995) Relaxation of arterial smooth muscle by calcium sparks. Science 270:633–637

    CAS  PubMed  Google Scholar 

  • Nelson PL, Zolochevska O, Figueiredo ML, Soliman A, Hsu WH, Feng JM, Zhang H, Cheng H (2011) Regulation of Ca(2+)-entry in pancreatic alpha-cell line by transient receptor potential melastatin 4 plays a vital role in glucagon release. Mol Cell Endocrinol 335:126–134

    CAS  PubMed  Google Scholar 

  • Nelson P, Ngoc Tran TD, Zhang H, Zolochevska O, Figueiredo M, Feng JM, Gutierrez DL, Xiao R, Yao S, Penn A et al (2013) Transient receptor potential melastatin 4 channel controls calcium signals and dental follicle stem cell differentiation. Stem Cells 31:167–177

    CAS  PubMed  Google Scholar 

  • Nilius B, Prenen J, Droogmans G, Voets T, Vennekens R, Freichel M, Wissenbach U, Flockerzi V (2003) Voltage dependence of the Ca2 + -activated cation channel TRPM4. J Biol Chem 278:30813–30820

    CAS  PubMed  Google Scholar 

  • Nilius B, Prenen J, Janssens A, Voets T, Droogmans G (2004a) Decavanadate modulates gating of TRPM4 cation channels. J Physiol 560:753–765

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nilius B, Prenen J, Voets T, Droogmans G (2004b) Intracellular nucleotides and polyamines inhibit the Ca2 + -activated cation channel TRPM4b. Pflugers Arch 448:70–75

    CAS  PubMed  Google Scholar 

  • Nilius B, Prenen J, Janssens A, Owsianik G, Wang C, Zhu MX, Voets T (2005a) The selectivity filter of the cation channel TRPM4. J Biol Chem 280:22899–22906

    CAS  PubMed  Google Scholar 

  • Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, Voets T, Zhu MX (2005b) Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem 280:6423–6433

    CAS  PubMed  Google Scholar 

  • Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T (2005c) Gating of TRP channels: a voltage connection? J Physiol 567:35–44

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T (2006) The Ca2+ -activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J 25:467–478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717

    CAS  PubMed  Google Scholar 

  • Pace RW, Mackay DD, Feldman JL, Del Negro CA (2007) Inspiratory bursts in the preBotzinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice. J Physiol 582:113–125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park JY, Hwang EM, Yarishkin O, Seo JH, Kim E, Yoo J, Yi GS, Kim DG, Park N, Ha CM et al (2008) TRPM4b channel suppresses store-operated Ca2+ entry by a novel protein-protein interaction with the TRPC3 channel. Biochem Biophys Res Commun 368:677–683

    CAS  PubMed  Google Scholar 

  • Partridge LD, Swandulla D (1987) Single Ca-activated cation channels in bursting neurons of Helix. Pflugers Arch 410:627–631

    CAS  PubMed  Google Scholar 

  • Popp R, Gogelein H (1992) A calcium and ATP sensitive nonselective cation channel in the antiluminal membrane of rat cerebral capillary endothelial cells. Biochim Biophys Acta 1108:59–66

    CAS  PubMed  Google Scholar 

  • Prawitt D, Monteilh-Zoller MK, Brixel L, Spangenberg C, Zabel B, Fleig A, Penner R (2003) TRPM5 is a transient Ca2 + -activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci USA 100:15166–15171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pusch CM, Meyer B, Kupka S, Smith RJ, Lalwani AK, Zenner HP, Blin N, Nurnberg P, Pfister M (2004) Refinement of the DFNA4 locus to a 1.44 Mb region in 19q13.33. J Mol Med (Berl) 82(6):398–402

    CAS  Google Scholar 

  • Reading SA, Brayden JE (2007) Central role of TRPM4 channels in cerebral blood flow regulation. Stroke 38:2322–2328

    CAS  PubMed  Google Scholar 

  • Ringer E, Russ U, Siemen D (2000) Beta(3)-adrenergic stimulation and insulin inhibition of non-selective cation channels in white adipocytes of the rat. Biochim Biophys Acta 1463:241–253

    CAS  PubMed  Google Scholar 

  • Rodighiero S, De Simoni A, Formenti A (2004) The voltage-dependent nonselective cation current in human red blood cells studied by means of whole-cell and nystatin-perforated patch-clamp techniques. Biochim Biophys Acta 1660:164–170

    CAS  PubMed  Google Scholar 

  • Rougier JS, Albesa M, Abriel H (2010) Ubiquitylation and SUMOylation of cardiac ion channels. J Cardiovasc Pharmacol 56:22–28

    CAS  PubMed  Google Scholar 

  • Sala-Rabanal M, Wang S, Nichols CG (2012) On potential interactions between non-selective cation channel TRPM4 and sulfonylurea receptor SUR1. J Biol Chem 287:8746–8756

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schattling B, Steinbach K, Thies E, Kruse M, Menigoz A, Ufer F, Flockerzi V, Bruck W, Pongs O, Vennekens R et al (2012) TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 18:1805–1811

    CAS  PubMed  Google Scholar 

  • Serafini N, Dahdah A, Barbet G, Demion M, Attout T, Gautier G, Arcos-Fajardo M, Souchet H, Jouvin MH, Vrtovsnik F et al (2012) The TRPM4 channel controls monocyte and macrophage, but not neutrophil, function for survival in sepsis. J Immunol 189:3689–3699

    CAS  PubMed  Google Scholar 

  • Shalinsky MH, Magistretti J, Ma L, Alonso AA (2002) Muscarinic activation of a cation current and associated current noise in entorhinal-cortex layer-II neurons. J Neurophysiol 88:1197–1211

    CAS  PubMed  Google Scholar 

  • Shimizu T, Owsianik G, Freichel M, Flockerzi V, Nilius B, Vennekens R (2009) TRPM4 regulates migration of mast cells in mice. Cell Calcium 45:226–232

    CAS  PubMed  Google Scholar 

  • Simard C, Salle L, Rouet R, Guinamard R (2012) Transient receptor potential melastatin 4 inhibitor 9-phenanthrol abolishes arrhythmias induced by hypoxia and re-oxygenation in mouse ventricle. Br J Pharmacol 165:2354–2364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simard C, Hof T, Keddache Z, Launay P, Guinamard R (2013) The TRPM4 non-selective cation channel contributes to the mammalian atrial action potential. J Mol Cell Cardiol 59:11–19

    CAS  PubMed  Google Scholar 

  • Simon F, Leiva-Salcedo E, Armisen R, Riveros A, Cerda O, Varela D, Eguiguren AL, Olivero P, Stutzin A (2010) Hydrogen peroxide removes TRPM4 current desensitization conferring increased vulnerability to necrotic cell death. J Biol Chem 285:37150–37158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith AC, Hristov KL, Cheng Q, Xin W, Parajuli SP, Earley S, Malysz J, Petkov GV (2013a) Novel role for the transient potential receptor melastatin 4 channel in guinea pig detrusor smooth muscle physiology. Am J Physiol Cell Physiol 304:C467–C477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith AC, Parajuli SP, Hristov KL, Cheng Q, Soder RP, Afeli SA, Earley S, Xin W, Malysz J, Petkov GV (2013b) TRPM4 channel: a new player in urinary bladder smooth muscle function in rats. Am J Physiol Renal Physiol 304:F918–F929

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stallmeyer B, Zumhagen S, Denjoy I, Duthoit G, Hebert JL, Ferrer X, Maugenre S, Schmitz W, Kirchhefer U, Schulze-Bahr E et al (2012) Mutational spectrum in the Ca(2+)-activated cation channel gene TRPM4 in patients with cardiac conductance disturbances. Hum Mutat 33:109–117

    CAS  PubMed  Google Scholar 

  • Sturgess NC, Carrington CA, Hales CN, Ashford ML (1987) Nucleotide-sensitive ion channels in human insulin producing tumour cells. Pflugers Arch 410:169–172

    CAS  PubMed  Google Scholar 

  • Suh SH, Watanabe H, Droogmans G, Nilius B (2002) ATP and nitric oxide modulate a Ca(2+)-activated non-selective cation current in macrovascular endothelial cells. Pflugers Arch 444:438–445

    CAS  PubMed  Google Scholar 

  • Suzuki K, Petersen OH (1988) Patch-clamp study of single-channel and whole-cell K + currents in guinea pig pancreatic acinar cells. Am J Physiol 255:G275–G285

    CAS  PubMed  Google Scholar 

  • Swandulla D, Lux HD (1985) Activation of a nonspecific cation conductance by intracellular Ca2+ elevation in bursting pacemaker neurons of Helix pomatia. J Neurophysiol 54:1430–1443

    CAS  PubMed  Google Scholar 

  • Takezawa R, Cheng H, Beck A, Ishikawa J, Launay P, Kubota H, Kinet JP, Fleig A, Yamada T, Penner R (2006) A pyrazole derivative potently inhibits lymphocyte Ca2+ influx and cytokine production by facilitating transient receptor potential melastatin 4 channel activity. Mol Pharmacol 69:1413–1420

    CAS  PubMed  Google Scholar 

  • Talavera K, Yasumatsu K, Voets T, Droogmans G, Shigemura N, Ninomiya Y, Margolskee RF, Nilius B (2005) Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438:1022–1025

    CAS  PubMed  Google Scholar 

  • Talavera K, Yasumatsu K, Yoshida R, Margolskee RF, Voets T, Ninomiya Y, Nilius B (2008) The taste transduction channel TRPM5 is a locus for bitter-sweet taste interactions. FASEB J 22:1343–1355

    CAS  PubMed  Google Scholar 

  • Teruyama R, Sakuraba M, Kurotaki H, Armstrong WE (2011) Transient receptor potential channel m4 and m5 in magnocellular cells in rat supraoptic and paraventricular nuclei. J Neuroendocrinol 23:1204–1213

    CAS  PubMed  Google Scholar 

  • Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, Nilius B (2005) Comparison of functional properties of the Ca2 + -activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37:267–278

    CAS  PubMed  Google Scholar 

  • Van den Abbeele T, Tran Ba Huy P, Teulon J (1996) Modulation by purines of calcium-activated non-selective cation channels in the outer hair cells of the guinea-pig cochlea. J Physiol 494(Pt 1):77–89

    PubMed Central  PubMed  Google Scholar 

  • Vennekens R, Nilius B (2007) Insights into TRPM4 function, regulation and physiological role. Handb Exp Pharmacol: 269–285

    Google Scholar 

  • Vennekens R, Olausson J, Meissner M, Bloch W, Mathar I, Philipp SE, Schmitz F, Weissgerber P, Nilius B, Flockerzi V et al (2007) Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat Immunol 8:312–320

    CAS  PubMed  Google Scholar 

  • Voets T, Owsianik G, Janssens A, Talavera K, Nilius B (2007) TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol 3:174–182

    CAS  PubMed  Google Scholar 

  • Wang X, Mori T, Sumii T, Lo EH (2002) Hemoglobin-induced cytotoxicity in rat cerebral cortical neurons: caspase activation and oxidative stress. Stroke 33:1882–1888

    CAS  PubMed  Google Scholar 

  • Wang J, Takahashi K, Piao H, Qu P, Naruse K (2013) 9-Phenanthrol, a TRPM4 inhibitor, protects isolated rat hearts from ischemia-reperfusion injury. PLoS One 8:e70587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B (2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277:47044–47051

    CAS  PubMed  Google Scholar 

  • Weber KS, Hildner K, Murphy KM, Allen PM (2010) Trpm4 differentially regulates Th1 and Th2 function by altering calcium signaling and NFAT localization. J Immunol 185:2836–2846

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woo SK, Kwon MS, Ivanov A, Gerzanich V, Simard JM (2013) The sulfonylurea receptor 1 (Sur1)-transient receptor potential melastatin 4 (Trpm4) channel. J Biol Chem 288:3655–3667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu XZ, Moebius F, Gill DL, Montell C (2001) Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc Natl Acad Sci USA 98:10692–10697

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang T, Pfister M, Blin N, Zenner HP, Pusch CM, Smith RJ (2005) Genetic heterogeneity of deafness phenotypes linked to DFNA4. Am J Med Genet A 139:9–12

    PubMed  Google Scholar 

  • Yarishkin OV, Hwang EM, Park JY, Kang D, Han J, Hong SG (2008) Endogenous TRPM4-like channel in Chinese hamster ovary (CHO) cells. Biochem Biophys Res Commun 369:712–717

    CAS  PubMed  Google Scholar 

  • Yoo JC, Yarishkin OV, Hwang EM, Kim E, Kim DG, Park N, Hong SG, Park JY (2010) Cloning and characterization of rat transient receptor potential-melastatin 4 (TRPM4). Biochem Biophys Res Commun 391:806–811

    CAS  PubMed  Google Scholar 

  • Yu W, Hill WG, Apodaca G, Zeidel ML (2011) Expression and distribution of transient receptor potential (TRP) channels in bladder epithelium. Am J Physiol Renal Physiol 300:F49–F59

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The author wishes to thank all members of the Laboratory of Ion Channel Research, and especially Prof. Emeritus Bernd Nilius, for stimulating discussions. This work is supported by the FWO Vlaanderen, the Bijzonder Onderzoeksfonds from the KU Leuven, and the Interuniversity Attraction Poles program from the federal Belgian government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi Vennekens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mathar, I., Jacobs, G., Kecskes, M., Menigoz, A., Philippaert, K., Vennekens, R. (2014). TRPM4. In: Nilius, B., Flockerzi, V. (eds) Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, vol 222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54215-2_18

Download citation

Publish with us

Policies and ethics