Skip to main content

The Essential Role of Calcium Phosphate Bioceramics in Bone Regeneration

  • Chapter
  • First Online:
Advances in Calcium Phosphate Biomaterials

Abstract

Various bioceramics or xenograft has been used to avoid autograft. However, there are large differences in the chemistry, the micro- and macrostructure, and consequently the performance in terms of resorption, absorption, and regeneration of physiological bone. The differences in such available bioceramics were reported and critical data presented. Recent developments related to CaP scaffolds including improvements in terms of engineering chemistry, surface properties, microstructure, and porosities, which lead them to be considered as being bioinstructive rather than osteoconductive scaffolds, have opened up new opportunities for bone regenerative technologies. Not only are some of these CaP bioceramics scaffolds osteoinductive in their own right, but evidence also supports the hypothesis that specific engineering bioceramics have a direct influence on the differentiation and proliferation of human mesenchymal stem cells (hMSCs). Tissue engineering, new bioactive molecules, and new surgical technologies increase the potential application of CaP bioceramics as carriers of these cells and also as scaffolds capable of guiding the behavior of these cells and the efficiency of bone regeneration. If the smart bioinstructive CaP scaffold technology led to a higher efficacy of CaP scaffolds, it would allow further surgical applications in bone tissue regeneration. The mechanical properties required for bone ingrowth and bone remodeling and mechanotransduction must be explored to allow for development of new generation scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dorozhkin S (2013) A detailed history of calcium orthophosphates from 1770s till 1950. Mater Sci Eng C33:3085–3110

    Article  Google Scholar 

  2. Albee FH, Morrison HF (1920) Studies in bone growth. Triple calcium phosphate as a stimulus to osteogenesis. Ann Surg 71:32–39

    Article  Google Scholar 

  3. De Groot K (1983) Bioceramics of calcium phosphate. CRC Press Inc., Boca Raton

    Google Scholar 

  4. Legeros R, Guy D, John L (2009) Bioactive bioceramics, orthopaedic biology and medicine. In: Pietrzak WS (ed) Musculoskeletal regeneration, biological materials and methods. Humana Press, Totowa, pp 153–181

    Google Scholar 

  5. Guy D, Franck J, Pierre L (2009) The micro macroporous biphasic calcium phosphate concept for bone reconstruction and tissue engineering. In: Bikramjit B, Dhirendra SK, Ashok K (eds) Advanced biomaterials: fundamentals, processing, and applications. Wiley, Hoboken, pp 101–141

    Google Scholar 

  6. Dorozhkin S (2012) Calcium orthophosphates: applications in nature, biology, and medicine. Pan Stanford Publishing Pte Ltd., Singapore, pp 1–853

    Book  Google Scholar 

  7. LeGeros RZ (1991) Calcium phosphates in oral biology and medicine, vol 15, Monographs in oral science. Karger, Basel

    Google Scholar 

  8. Gibson IR (2012) Calcium phosphate as scaffolds for mesenchymal stem cell. In: Ramalingam M, Ramakrishna S, Best S (eds) Biomaterials and stem cells in regenerative medicine. CRC Press, Boca Raton, pp 219–237

    Chapter  Google Scholar 

  9. Bohner M (2000) Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 31:37–47

    Article  Google Scholar 

  10. Hench LL, Thompson I (2010) Twenty first century challenges for biomaterials. J R Soc Interface 7(4):S379–S391

    Article  Google Scholar 

  11. Daculsi G, Laboux O, Malard O, Weiss P (2003) Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med 14(3):195–200

    Article  Google Scholar 

  12. Daculsi G, LeGeros R, Nery E, Lynch K, Kerebel B (1989) Transformation of biphasic calcium phosphate ceramics in vivo. Ultrastructural and physicochemical characterization. J Biomed Mater Res 23:883–894

    Article  Google Scholar 

  13. Daculsi G, LeGeros RZ, Heughebaert M, Barbieux I (1990) Formation of carbonate apatite crystals after implantation of calcium phosphate ceramics. Calcif Tissue Int 46:20–27

    Article  Google Scholar 

  14. Daculsi G, Weiss P, Bouler JM, Gauthier O, Aguado E (1999) Biphasic calcium phosphate hydrosoluble polymer composites: a new concept for bone and dental substitution biomaterials. Bone 25:59–61

    Article  Google Scholar 

  15. LeGeros RZ, Chohayeb A, Shulman A (1982) Apatitic calcium phosphates: possible restorative materials. J Dent Res 61:343

    Google Scholar 

  16. Brown WE, Chow LC (1987) A new calcium phosphate water-setting cement. In: Brown PW (ed) Cement research progress. American Ceramic Society, Westerville, pp 352–379

    Google Scholar 

  17. Niwa S, LeGeros RZ (2002) Injectable calcium phosphate cements for repair of bone defects. In: Lewandrowski K-U, Wise DL, Trantolo DJ, Gresser JD (eds) Tissue engineering and biodegradable equivalents. Scientific and clinical applications. Marcel Dekker, New York, pp 385–400

    Google Scholar 

  18. Daculsi G (2006) Biphasic calcium phosphate Granules concept for Injectable and Mouldable Bone Substitute. In: Vincenzini P, Giardino R (eds) Advances in science and technology, vol 49. Trans Tech Publications, Faenza, Italy, pp 9–13

    Google Scholar 

  19. Weiss P, Layrolle P, Clergeau LP, Enckel B, Pilet P, Amouriq Y, Daculsi G, Giumelli B (2007) The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials 28:3295–3305

    Article  Google Scholar 

  20. Daculsi G, Durand M, Fabre T, Vogt F, Uzel AP, Rouvillain JL (2012) Development and clinical cases of injectable bone void filler used in orthopaedic (Développement et cas cliniques d’un substitut osseux injectable en orthopédie). IRBM 33:253–261

    Article  Google Scholar 

  21. Lapkowski M, Weiss P, Daculsi G, Dupraz A (1997) Composition pour biomatériau, procédé de préparation II Date de dépôt. CNRS Patent WO 97/059

    Google Scholar 

  22. Fellah BH, Weiss P, Gauthier O, Rouillon T, Pilet P, Daculsi G, Layrolle P (2006) Bone repair using a new injectable self-crosslinkable bone substitute. J Orthop Res 24(4):628–635

    Article  Google Scholar 

  23. Fatimi A, Tassin JF, Quillard S, Axelo MAV, Weiss P (2008) The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices. Biomaterials 29:533–543

    Article  Google Scholar 

  24. Turczyn R, Weiss P, Lapkowski M, Daculsi G (2000) In situ self hardening bioactive composite for bone and dental surgery. J Biomater Sci Polym Ed 11(2):217–223

    Article  Google Scholar 

  25. Le Guehennec L, Layrolle P, Daculsi G (2004) A review of bioceramics and fibrin sealant. Eur Cell Mater 13(8):1–11

    Google Scholar 

  26. Le Nihouannen D, Saffarzadeh A, Aguado E, Goyenvalle E, Gauthier O, Moreau F, Pilet P, Spaethe R, Daculsi G, Layrolle P (2007) Osteogenic properties of calcium phosphate ceramics and fibrin glue based composites. J Mater Sci Mater Med 18(2):225–235

    Article  Google Scholar 

  27. Khairoun I, LeGeros RZ, Daculsi G, Bouler JM, Guicheux J, Gauthier O (2004) Macroporous, resorbable and injectable calcium phosphate-based cements (MCPC) for bone repair, augmentation, regeneration and osteoporosis treatment. Provisional patent 11/054 623

    Google Scholar 

  28. Daculsi G, Durand M, Hauger O, Seris E, Borget P, LeGeros R, LeHuec JC (2012) Self hardening macroporous biphasic calcium phosphate bone void filler for bone reconstruction. Animal study and human data. Key Eng Mater 493–494:703–713

    Google Scholar 

  29. Goyenvalle E, Aguado E, Legeros R, Daculsi G (2007) Effect of sintering process on microporosity, and bone growth on biphasic calcium phosphate ceramics. Key Eng Mater 333–334 (in press). Trans Tech Publication, Switzerland

    Google Scholar 

  30. Fellah BH, Delorme B, Sohier J, Magne D, Hardouin P, Layrolle P (2010) Macrophage and osteoblast responses to biphasic calcium phosphate microparticles. J Biomed Mater Res A 93(4):1588–1595

    Google Scholar 

  31. Basle MF, Chappard D, Grizon F, Filmon R, Delecrin J, Daculsi G, Rebel A (1993) Osteoclastic resorption of CaP biomaterials implanted in rabbit bone. Calcif Tissue Int 53:348–356

    Article  Google Scholar 

  32. Daculsi G, Legeros RZ, Legeros J, Mitre D (1991) Lattice defects in calcium phosphate ceramics: high resolution TEM ultrastructural study. J Biomed Mater Res Appl Biomater 2:147–152

    Article  Google Scholar 

  33. Hench LL (1994) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    Article  Google Scholar 

  34. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915

    Article  Google Scholar 

  35. Daculsi G, Passuti N (1990) Bioactive ceramics, fundamental properties and clinical applications the osteocoalescence process. In: Oonishi H, Heimcke G (eds) Ceramics in medicine, pp 3–10

    Google Scholar 

  36. Damien CJ, Parsons JR (1991) Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2(3):187–208

    Article  Google Scholar 

  37. Davies JE (1998) Mechanisms of endosseous integration. Int J Prosthodont 11(5):391–401

    Google Scholar 

  38. Cornell CN (1999) Osteoconductive materials and their role as substitutes for autogenous bone grafts. Orthop Clin N Am 30:591–598

    Article  Google Scholar 

  39. Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10(Suppl 2):S96–S101

    Google Scholar 

  40. Barradas Ana MC, Yuan H, van Blitterswijk CA, Habibovic P (2011) Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cell Mater 21:407–429

    Google Scholar 

  41. Le Nihouannen D, Daculsi G, Saffarzadeh A, Gauthier O, Delplace S, Pilet P et al (2005) Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone 36(6):1086–1093

    Article  Google Scholar 

  42. Ripamonti U, Crooks J, Kirbride A (1999) Sintered porous hydroxyapatites with intrinsic osteoinductive activity: geometric induction of bone formation. S Afr J Sci 95:335–343

    Google Scholar 

  43. Yuan H, Yang Z, De Bruijn JD, De Groot K, Zhang X (2001) Material-dependent bone induction by calcium phosphate ceramics: a 2.5-year study in dog. Biomaterials 22:2617–2623

    Article  Google Scholar 

  44. Yuan H, Fernandes H, Habibovick P, de Boer J, Barrads AMC, de Ruiter A, Walsh WR, van Blitterswijk CA, de Bruijn JD (2010) Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci 107:13614–13619

    Article  Google Scholar 

  45. Senn NS (1889) On the healing of aseptic bone cavities by implantation of antiseptic decalcified bone. Am J Med Sci 98(3):219–243

    Article  Google Scholar 

  46. Rengachary SS (2002) Bone morphogenetic proteins: basic concepts. Neurosurg Focus 13(6):e2

    Google Scholar 

  47. Huggins CB (1931) The phosphatase activity of transplants of the epithelium of the urinary bladder to the abdominal wall producing heterotopic ossification. Biochem J 25(3):728–732

    Google Scholar 

  48. Bronner ME, LeDouarin NM (2012) Development and evolution of the neural crest: an overview. Dev Biol 366(1):2–9

    Article  Google Scholar 

  49. Levander G (1934) On the formation of new bone in bone transplantation. Acta Chir Scand 74:425–426

    Google Scholar 

  50. Levander G (1938) A study of bone regeneration. Surg Gynecol Obstet 67:705–714

    Google Scholar 

  51. Bridges JB, Pritchard JJ (1958) Bone and cartilage induction in the rabbit. J Anat 92(1):28–38

    Google Scholar 

  52. Urist MR, McLEAN FC (1952) Osteogenetic potency and new-bone formation by induction in transplants to the anterior chamber of the eye. J Bone Joint Surg Am 34-A(2):443–476

    Google Scholar 

  53. Urist MR (1965) Bone formation by autoinduction. J Sci 150(3698):893–899

    Article  Google Scholar 

  54. Friedenstein AY (1968) Induction of bone tissue by transitional epithelium. Clin Orthop 59:21–37

    Google Scholar 

  55. Wilson-Hench J (1987) Osteoinduction. In: Williams D (ed) Progress in biomedical engineering. Elsevier, Amsterdam, p 29

    Google Scholar 

  56. Daculsi G, Fellah BH, Miramond T, Durand M (2013) Osteoconduction, Osteogenicity, Osteoinduction, what are the fundamental properties for a smart bone substitutes. IRBM 34(4):346–348

    Article  Google Scholar 

  57. Ramalingam M, Ramakrishna S, Best S (eds) (2012) Biomaterials and stem cells in regenerative medicine. CRC Press/Taylor & Francis Group, Boca Raton, pp 1–546

    Book  Google Scholar 

  58. Regenerative bone defects using new biomedical engineering approaches, REBORNE 2010–2014, 7th PCRD EC program. www.reborne.org

  59. Espitalier F, Vinatier C, Lerouxel E, Guicheux J, Pilet P, Moreau F, Daculsi G, Weiss P, Malard O (2009) A comparison between bone reconstruction following the use of mesenchymal stem cells and total bone marrow in association with calcium phosphate scaffold in irradiated bone. Biomaterials 30(5):763–769

    Article  Google Scholar 

  60. Lerouxel E, Moreau A, Bouler JM, Giumelli B, Daculsi G, Weiss P, Malard O (2009) Effects of high doses of ionising radiation on bone in rats: a new model for evaluation of bone engineering. Br J Oral Maxillofac Surg 47(8):602–607

    Article  Google Scholar 

  61. Cordonnier T, Layrolle P, Gaillard J, Langonné A, Sensebé L, Rosset P, Sohier J (2010) 3D environment on human mesenchymal stem cells differentiation for bone tissue engineering. J Mater Sci Mater Med 21(3):981–987

    Article  Google Scholar 

  62. Arinzeh TL, Tran T, McAlary J, Daculsi G (2005) A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials 26(17):3631–3638

    Article  Google Scholar 

  63. Ripamonti U (1996) Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 17:31–35

    Article  Google Scholar 

  64. Smucker JD, Aggarwal D, Zamora PO, Atkinson BL, Bobst JA, Nepola JV, Fredericks DC (2007) Assessment of B2A2-K-NS peptide coated on an osteoconductive granule in a rabbit postrolateral fusion model. In: Proceedings AAOS, San Diego, 12–14 Feb 2007

    Google Scholar 

  65. Hanssen AD (2005) Local antibiotic delivery vehicles in the treatment of musculoskeletal infection. Clin Orthop Relat Res 437:91–96

    Article  Google Scholar 

  66. Sasaki T, Ishibashi T, Katano H, Nagumo A, Toh S (2005) In vitro elution of vancomycin from calcium phosphate cement. J Arthroplasty 20:1055–1059

    Article  Google Scholar 

  67. Frutos P, Torrado S, Perez-Lorenzo ME, Frutos G (2000) A validated quantitative colorimetric assay for gentamicin. J Pharm Biomed Anal 21:1149–1159

    Article  Google Scholar 

  68. McNally A, Sly K, Lin S, Bourges X, Daculsi G (2007) Release of antibiotics from macroporous injectable calcium phosphate cement. Key Eng Mater 333–334 (in press). Trans Tech Publication, Switzerland

    Google Scholar 

  69. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(Suppl 1):5–16

    Article  Google Scholar 

  70. Liedert A, Kaspar D, Blakytny R, Claes L, Ignatius A (2006) Signal transduction pathways involved in mechano transduction in bone cells. Biochem Biophys Res Commun 349:1–5

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the 7th framework program HEALTH-2009-1.4.2 of the European Commission on Regenerative Bone defects using New biomedical Engineering approaches (REBORNE project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Daculsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Daculsi, G., Fellah, B.H., Miramond, T. (2014). The Essential Role of Calcium Phosphate Bioceramics in Bone Regeneration. In: Ben-Nissan, B. (eds) Advances in Calcium Phosphate Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53980-0_4

Download citation

Publish with us

Policies and ethics