Skip to main content

Imaging Biofilms in Tissue Specimens

  • Chapter
  • First Online:
Antibiofilm Agents

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 8))

  • 1838 Accesses

Abstract

Microscopic imaging can be used to provide direct evidence of the presence of biofilms in tissue samples. However, successful imaging requires a series of well-planned and executed steps as well as adequate controls. The steps can include sample collection, fixation, embedding and sectioning, staining, and imaging. Each of these steps is discussed in this chapter. Selection of an appropriate staining technique is one of the key considerations for sample analysis. A variety of staining techniques ranging from general stains to highly specific molecular probes are available. For fluorescence microscopy, staining complications can include tissue autofluorescence, fixation-induced autofluorescence, and nonspecific binding. To assess the impact of these potential complications, it is best to use multiple complementary staining techniques as well as adequate controls. A variety of microscopic techniques have been used to image biofilms in tissue samples including light microscopy, transmission and scanning electron microscopy, epifluorescent microscopy, and confocal scanning laser microscopy. The latter technique has advantages of minimal sample manipulation, three dimensional imaging, and enables the use of specific fluorescent molecular probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akiyama H, Kanzaki H, Tada J, Arata J (1996) Staphylococcus aureus infection on cut wounds in the mouse skin: experimental staphylococcal botryomycosis. J Dermatol Sci 11:234–238

    Article  CAS  PubMed  Google Scholar 

  • Amann R, Fuchs BM, Behrens S (2001) The identification of microorganisms by fluorescence in situ hybridisation. Curr Opin Biotechnol 12:231–236

    Article  CAS  PubMed  Google Scholar 

  • Anderson MJ, Lin YC, Gillman AN, Parks PJ, Schlievert PM, Peterson ML (2012) Alpha-toxin promotes Staphylococcus aureus mucosal biofilm formation. Front Cell Infect Microbiol 2:64

    Article  PubMed Central  PubMed  Google Scholar 

  • Baschong W, Suetterlin R, Laeng RH (2001) Control of autofluorescence of archival formaldehyde-fixed, paraffin-embedded tissue in confocal laser scanning microscopy (CLSM). J Histochem Cytochem 49:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Bottari B, Ercolini D, Gatti M, Neviani E (2006) Application of FISH technology for microbiological analysis: current state and prospects. Appl Microbiol Biotechnol 73:485–494

    Article  CAS  PubMed  Google Scholar 

  • Bruce-Gregorios J (2006) Histopathologic techniques, 2nd edn. Goodwill Trading Co, Quezon City

    Google Scholar 

  • Byron A, Humphries JD, Humphries MJ (2013) Defining the extracellular matrix using proteomics. Int J Exp Pathol 94:75–92

    Article  CAS  PubMed Central  Google Scholar 

  • Coling D, Kachar B (2001) Theory and application of fluorescence microscopy. Curr Protoc Neurosci Chapter 2:Unit 2.1

    Google Scholar 

  • Collins JS, Goldsmith TH (1981) Spectral properties of fluorescence induced by glutaraldehyde fixation. J Histochem Cytochem 29:411–414

    Article  CAS  PubMed  Google Scholar 

  • Connolly KL, Roberts AL, Holder RC, Reid SD (2011) Dispersal of Group A streptococcal biofilms by the cysteine protease SpeB leads to increased disease severity in a murine model. PLoS One 6:e18984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cowen T, Haven AJ, Burnstock G (1985) Pontamine sky blue: a counterstain for background autofluorescence in fluorescence and immunofluorescence histochemistry. Histochemistry 82:205–208

    Article  CAS  PubMed  Google Scholar 

  • Engbaek K, Johansen KS, Jensen ME (1979) A new technique for Gram staining paraffin-embedded tissue. J Clin Pathol 32:187–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fazli M, Bjarnsholt T, Kirketerp-Møller K, Jørgensen A, Andersen CB, Givskov M, Tolker-Nielsen T (2011) Quantitative analysis of the cellular inflammatory response against biofilm bacteria in chronic wounds. Wound Repair Regen 19:387–391

    Article  PubMed  Google Scholar 

  • Freeman K, Woods E, Welsby S, Percival SL, Cochrane CA (2009) Biofilm evidence and the microbial diversity of horse wounds. Can J Microbiol 55:197–202

    Article  CAS  PubMed  Google Scholar 

  • Gupta E, Bhalla P, Khurana N, Singh T (2009) Histopathology for the diagnosis of infectious diseases. Indian J Med Microbiol 27:100–106

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, Hayes J, Forbes M, Greenberg DP, Dice B, Burrows A, Wackym PA, Stoodley P, Post JC, Ehrlich GD, Kerschner JE (2006) Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 296:202–211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han A, Zenilman JM, Melendez JH, Shirtliff ME, Agostinho A, James G, Stewart PS, Mongodin EF, Rao D, Rickard AH, Lazarus GS (2011) The importance of a multi-faceted approach to characterizing the microbial flora of chronic wounds. Wound Repair Regen 19:532–541

    Article  PubMed Central  PubMed  Google Scholar 

  • Hansen T, Kunkel M, Weber A, James Kirkpatrick C (2006) Osteonecrosis of the jaws in patients treated with bisphosphonates – histomorphologic analysis in comparison with infected osteoradionecrosis. J Oral Pathol Med 35:155–160

    Article  PubMed  Google Scholar 

  • Harlow E, Lane D (1999) Using antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, NY

    Google Scholar 

  • Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • James GA, Swogger E, Wolcott R, Pulcini Ed, Secor P, Sestrich J, Costerton JW, Stewart PS (2008) Biofilms in chronic wounds. Wound Repair Regen 16:37–44

    Google Scholar 

  • Kathju S, Lasko LA, Stoodley P (2012) Considering hidradenitis suppurativa as a bacterial biofilm disease. FEMS Immunol Med Microbiol 65:385–389

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JR, Thomas RN (1999) Confocal laser scanning microscopy for analysis of microbial biofilms. In: Doyle RJ (ed) Methods in enzymology, vol 310. Academic, San Diego, pp p131–p144

    Google Scholar 

  • Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marx RE, Tursun R (2012) Suppurative osteomyelitis, bisphosphonate induced osteonecrosis, osteoradionecrosis: a blinded histopathologic comparison and its implications for the mechanism of each disease. Int J Oral Maxillofac Surg 41:283–289

    Article  CAS  PubMed  Google Scholar 

  • Mason DJ, Shanmuganathan S, Mortimer FC, Gant VA (1998) A fluorescent Gram stain for flow cytometry and epifluorescence microscopy. Appl Environ Microbiol 64(7):2681–2685

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moter A, Göbel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41(2):85–112

    Article  CAS  PubMed  Google Scholar 

  • Neut D, van Horn JR, van Kooten TG, van der Mei HC, Busscher HJ (2003) Detection of biomaterial-associated infections in orthopaedic joint implants. Clin Orthop Relat Res 413:261–268

    Article  PubMed  Google Scholar 

  • Nistico L, Gieseke A, Stoodley P, Hall-Stoodley L, Kerschner JE, Ehrlich GD (2009) Fluorescence “in situ” hybridization for the detection of biofilm in the middle ear and upper respiratory tract mucosa. Methods Mol Biol 493:191–213

    Article  CAS  PubMed  Google Scholar 

  • Nwaneshiudu A, Kuschal C, Sakamoto FH, Anderson RR, Schwarzenberger K, Young RC (2012) Introduction to confocal microscopy. J Invest Dermatol 132:e3

    Article  CAS  PubMed  Google Scholar 

  • Oliveira VC, Carrara RC, Simoes DL, Saggioro FP, Carlotti CG Jr, Covas DT, Neder L (2010) Sudan Black B treatment reduces autofluorescence and improves resolution of in situ hybridization specific fluorescent signals of brain sections. Histol Histopathol 25:1017–1024

    CAS  PubMed  Google Scholar 

  • Raghavachari N, Bao YP, Li G, Xie X, Müller UR (2003) Reduction of autofluorescence on DNA microarrays and slide surfaces by treatment with sodium borohydride. Anal Biochem 312:101–105

    Article  CAS  PubMed  Google Scholar 

  • Rippstein P, Black MK, Boivin M, Veinot JP, Ma X, Chen YX, Human P, Zilla P, O’Brien ER (2006) Comparison of processing and sectioning methodologies for arteries containing metallic stents. J Histochem Cytochem 54:673–681

    Article  CAS  PubMed  Google Scholar 

  • Roberts AL, Connolly KL, Kirse DJ, Evans AK, Poehling KA, Peters TR, Reid SD (2012) Detection of group A Streptococcus in tonsils from pediatric patients reveals high rate of asymptomatic streptococcal carriage. BMC Pediatr 12:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Rubbo SD, Gardner JF, Webb RL (1967) Biocidal activities of glutaraldehyde and related compounds. J Appl Bacteriol 30:78–87

    Article  CAS  PubMed  Google Scholar 

  • Rudkjøbing VB, Thomsen TR, Alhede M, Kragh KN, Nielsen PH, Johansen UR, Givskov M, Høiby N, Bjarnsholt T (2012) The microorganisms in chronically infected end-stage and non-end-stage cystic fibrosis patients. FEMS Immunol Med Microbiol 65:236–244

    Article  PubMed  Google Scholar 

  • Sizemore RK, Caldwell JJ, Kendrick AS (1990) Alternate gram staining technique using a fluorescent lectin. Appl Environ Microbiol 56:2245–2247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Srivastava GK, Reinoso R, Singh AK, Fernandez-Bueno I, Hileeto D, Martino M, Garcia-Gutierrez MT, Merino JM, Alonso NF, Corell A, Pastor JC (2011) Trypan Blue staining method for quenching the autofluorescence of RPE cells for improving protein expression analysis. Exp Eye Res 93:956–962

    Article  CAS  PubMed  Google Scholar 

  • Stoodley P, Nistico L, Johnson S, Lasko LA, Baratz M, Gahlot V, Ehrlich GD, Kathju S (2008) Direct demonstration of viable Staphylococcus aureus biofilms in an infected total joint arthroplasty. A case report. J Bone Joint Surg Am 90:1751–1758

    Article  PubMed Central  PubMed  Google Scholar 

  • Sun Y, Yu H, Zheng D, Cao Q, Wang Y, Harris D, Wang Y (2011) Sudan black B reduces autofluorescence in murine renal tissue. Arch Pathol Lab Med 135:1335–1342

    Article  CAS  PubMed  Google Scholar 

  • Sunde PT, Olsen I, Göbel UB, Theegarten D, Winter S, Debelian GJ, Tronstad L, Moter A (2003) Fluorescence in situ hybridization (FISH) for direct visualization of bacteria in periapical lesions of asymptomatic root-filled teeth. Microbiology 149:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Trøstrup H, Thomsen K, Christophersen LJ, Hougen HP, Bjarnsholt T, Jensen PØ, Kirkby N, Calum H, Høiby N, Moser C (2013) Pseudomonas aeruginosa biofilm aggravates skin inflammatory response in BALB/c mice in a novel chronic wound model. Wound Repair Regen 21:292–299

    Article  PubMed  Google Scholar 

  • Tsai YJ, Lin YC, Wu WB, Chiu PH, Lin BJ, Hao SP (2013) Biofilm formations in nasopharyngeal tissues of patients with nasopharyngeal osteoradionecrosis. Otolaryngol Head Neck Surg 148(4):633–636

    Article  PubMed  Google Scholar 

  • Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136–143

    Article  CAS  PubMed  Google Scholar 

  • Wright Cell Imaging Facility, Toronto Western Research Institute (2013) Autofluorescence causes and cures. http://www.uhnresearch.ca/facilities/wcif/PDF/Autofluorescence.pdf. Accessed 3 Nov 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garth James .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

James, G., Hunt, A.M.A. (2014). Imaging Biofilms in Tissue Specimens. In: Rumbaugh, K., Ahmad, I. (eds) Antibiofilm Agents. Springer Series on Biofilms, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53833-9_3

Download citation

Publish with us

Policies and ethics