Skip to main content

Cochlear Macromechanics — a Review

  • Conference paper
Peripheral Auditory Mechanisms

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 64))

Abstract

This paper reviews macromechanical models of the cochlea. The emphasis is on two questions: (i) which geometrical and mechanical features should be included, and (ii) which experimental results can be matched.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J.B. (1977). Two-dimensional cochlear fluid model: New results, J. Acoust. Soc. Am. 61, 110–119.

    Article  Google Scholar 

  2. Allen, J.B. and Sondhi, M.M. (1979). Cochlear macromechanics: Time domain solutions, J. Acoust. Soc. Am. 66, 123–132.

    Article  MATH  Google Scholar 

  3. Békésy, G. von (1960). Experiments in Hearing, McGraw-Hill, New York.

    Google Scholar 

  4. Boer, E. de (1981). Short waves in three-dimensional cochlea models: solution for a ‘block’ model, Hearing Res. 4, 53–77.

    Article  Google Scholar 

  5. Boer, E. de (1982). Correspondence principle in cochlear mechanics, J. Acoust. Soc. Am. 71, 1496–1501.

    Article  Google Scholar 

  6. Boer, E. de (1983). No sharpening? A challenge for cochlear mechanics. J. Acoust. Soc. Am. 73, 567–573.

    Article  Google Scholar 

  7. Boer, E. de (1983). Wave reflection in passive and active cochlea models. In: Mechanics of Hearing, E. de Boer and M.A. Viergever (eds), Martinus Nijhoff Publishers/Delft Univ. Press, 135–142.

    Chapter  Google Scholar 

  8. Boer, E. de and Bienema, E. van (1982). Solving cochlear mechanics problems with higher order differential equations, J. Acoust. Soc. Am. 72, 1427–1434.

    Article  MATH  Google Scholar 

  9. Boer, E. de and Viergever, M.A. (1982). Validity of the Liouville-Green (or WKB) method for cochlear mechanics, Hearing Res. 8, 131–155.

    Article  Google Scholar 

  10. Boer, E. de and Viergever, M.A. (1984). Wave propagation and dispersion in the cochlea. Hearing Res. 13, 101–112.

    Article  Google Scholar 

  11. Bogert, B.P. (1951). Determination of the effects of dissipation in the cochlear partition by means of a network representing the basilar membrane, J. Acoust. Soc. Am. 23, 151–154.

    Article  Google Scholar 

  12. Borsboom, M.J.A. (1979). Linear and non-linear one-dimensional cochlear models, Eng. D. thesis, Dept. of Mathematics, Delft Univ. of Technology.

    Google Scholar 

  13. Diependaal, R.J., Boer, E. de and Viergever, M.A. (1985). Determination of the cochlear power flux from basilar membrane vibration data. These proceedings.

    Google Scholar 

  14. Diependaal, R.J. and Viergever, M.A. (1983). Nonlinear and active modelling of cochlear mechanics: A precarious affair. In: Mechanics of Hearing, E. de Boer and M.A. Viergever (eds), Martinus Nijhoff Publishers/Delft Univ. Press, 153–160.

    Chapter  Google Scholar 

  15. Duifhuis, H., Hoogstraten, H.W., Netten, S.M. van, Diependaal, R.J. and Bialek, W. (1985). Modelling the cochlear partition with coupled Van der Pol oscillators. These proceedings.

    Google Scholar 

  16. Fletcher, H. (1951). On the dynamics of the cochlea, J. Acoust. Soc. Am. 23, 637–645.

    Article  MathSciNet  Google Scholar 

  17. Guinan, J.J., Jr. and Peake, W.T. (1967). Middle-ear characteristics of anesthetized cats, J. Acoust. Soc. Am. 41, 1237–1261.

    Article  Google Scholar 

  18. Hall, J.L. (1974). Two-tone distortion products in a nonlinear model of the basilar membrane, J. Acoust. Soc. Am. 56, 1818–1828.

    Article  Google Scholar 

  19. Hubbard, A.E. and Geis1er, C.D. (1972). A hybrid computer model of the cochlear partition, J. Acoust. Soc. Am. 51, 1895–1903.

    Article  Google Scholar 

  20. Johnstone, B.M., Taylor, K.J., and Boyle, A.J. (1970). Mechanics of the guinea pig cochlea, J. Acoust. Soc. Am. 47, 504–509.

    Article  Google Scholar 

  21. Johnstone, B.M. and Yates, G.K. (1974). Basilar membrane tuning curves in the guinea pig, J. Acoust. Soc. Am. 55, 584–587.

    Article  Google Scholar 

  22. Khanna, S.M. and Leonard, D.G.B. (1982). Basilar membrane tuning in the cat cochlea, Science 215, 305–306.

    Article  Google Scholar 

  23. Kim, D.O., Molnar, C.E., and Pfeiffer, R.R. (1973). A system of nonlinear differential equations modeling basilar-membrane motion, J. Acoust. Soc. Am. 54, 1517–1529.

    Article  Google Scholar 

  24. Kim, D.O., Neely, S.T., Molnar, C.E., and Matthews, J.W. (1980). An active cochlear model with negative damping in the partition: Comparison with Rhode’s ante- and post-mortem observations. In: Psyohophysteal, physiological and behavioural studies in heaving, G. van den Brink and F.A. Bilsen (eds), Delft Univ. Press, 7–15.

    Chapter  Google Scholar 

  25. Kok, L.P. and Haeringen, H. van (1979). Reflections on ‘Reflections on reflections’, Internal report, Inst. of Theoretical Physics, Univ. of Groningen.

    Google Scholar 

  26. Lesser, M.B. and Berkley, D.A. (1972). Fluid mechanics of the cochlea. Part 1, J. Fluid Mech. 51, 497–512.

    Article  MATH  Google Scholar 

  27. Lien, M.D. (1973). A mathematical model of the mechanics of the cochlea, Ph.D. thesis, Washington Univ. School of Medicine, St. Louis.

    Google Scholar 

  28. Lighthill, J. (1981). Energy flow in the cochlea, J. Fluid. Mech. 106, 149–213.

    Article  MathSciNet  MATH  Google Scholar 

  29. Loh, C.H. (1983). Multiple scale analysis of the spirally coiled cochlea, J. Acoust. Soc. Am. 74, 95–103.

    Article  MathSciNet  MATH  Google Scholar 

  30. Miller, C.E. (1985). VLFEM analysis of a two-dimensional cochlear model, J. Appl. Mech., in press.

    Google Scholar 

  31. Neely, S.T. (1981). Finite difference solution of a two-dimensional mathematical model of the cochlea, J. Acoust. Soc. Am. 69, 1386–1393.

    Article  Google Scholar 

  32. Netten, S.M. van and Duifhuis, H. (1983). Modelling an active, nonlinear cochlea. In: Mechanics of Hearing, E. de Boer and M.A. Viergever (eds), Martinus Nijhoff Publishers/Delft Univ. Press, 143–151.

    Chapter  Google Scholar 

  33. Neu, J.C. and Keller, J.B. (1985). Asymptotic analysis of a viscous cochlear model, J. Acoust. Soc. Am., in press.

    Google Scholar 

  34. Oetinger, R. und Hauser, H. (1961). Ein elektrischer Kettenleiter zur Untersuchung der mechanischen Schwingungsvorgänge im Innenohr, Acustica 11, 161–177.

    Google Scholar 

  35. Peterson, L.C. and Bogert, B.P. (1950). A dynamical theory of the cochlea, J. Acoust. Soc. Am. 22, 369–381.

    Article  Google Scholar 

  36. Ranke, O.F. (1950). Hydrodynamik der Schneckenflüssigkeit, Z. Biol. 103, 409–434.

    Google Scholar 

  37. Rauch, S. (1964). Biochemie des Hörorgans, Thieme, Stuttgart.

    Google Scholar 

  38. Rhode, W.S. (1971). Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique, J. Acoust. Soc. Am. 49, 1218–1231.

    Article  Google Scholar 

  39. Rhode, W.S. (1978). Some observations on cochlear mechanics, J. Acoust. Soc. Am. 64, 158–176.

    Article  Google Scholar 

  40. Robles, L., Ruggero, M., and Rich, N.C. (1984). Mössbauer measurements of basilar membrane tuning curves in the chinchilla, J. Acoust. Soc. Am. 76, S35.

    Article  Google Scholar 

  41. Sellick, P.M., Patuzzi, R., and Johnstone, B.M. (1982). Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique, J. Acoust. Soc. Am. 72, 131–141.

    Article  Google Scholar 

  42. Siebert, W.M. (1974). Ranke revisited — a simple short-wave cochlear model, J. Acoust. Soc. Am. 56, 594–600.

    Article  Google Scholar 

  43. Sondhi, M.M. (1978). Method for computing motion in a two-dimensional cochlear model, J. Acoust. Soc. Am. 63, 1468–1477.

    Article  MATH  Google Scholar 

  44. Steele, C.R. (1974). Behavior of the basilar membrane with pure-tone excitation, J. Acoust. Soc. Am. 55, 148–162.

    Article  Google Scholar 

  45. Steele, C.R. and Taber, L.A. (1979). Comparison of WKB and finite difference calculations for a two-dimensional cochlear model, J. Acoust. Soc. Am. 65, 1001–1006.

    Article  MATH  Google Scholar 

  46. Steele, C.R. and Taber, L.A. (1979). Comparison of WKB calculations and experimental results for three-dimensional cochlear models, J. Acoust. Soc. Am. 65, 1007–1018.

    Article  MATH  Google Scholar 

  47. Steele, C.R. and Taber, L.A. (1981). Three-dimensional model calculations for guinea pig cochlea, J. Acoust. Soc. Am. 69, 1107–1111.

    Article  Google Scholar 

  48. Steele, C.R. and Zais, J.G. (1985). Effect of coiling in a cochlear model, J. Acoust. Soc. Am. 77, 1849–1852.

    Article  Google Scholar 

  49. Taber, L.A. (1979). An analytic study of realistic cochlear models including three-dimensional fluid motion. Ph.D. thesis, Stanford Univ.

    Google Scholar 

  50. Taber, L.A. and Steele, C.R. (1981). Cochlear model including three-dimensional fluid and four modes of partition flexibility, J. Acoust. Soc. Am. 70, 426–436.

    Article  MATH  Google Scholar 

  51. Viergever, M.A. (1978). On the physical background of the point-impedance characterization of the basilar membrane in cochlear mechanics, Acustica 39, 292–297.

    MATH  Google Scholar 

  52. Viergever, M.A. (1978). Basilar membrane motion in a spiral-shaped cochlea, J. Acoust. Soc. Am. 64, 1048–1053.

    Article  MATH  Google Scholar 

  53. Viergever, M.A. (1980). Mechanics of the inner ear — a mathematical approach. Delft Univ. Press.

    Google Scholar 

  54. Viergever, M.A. and Diependaal, R.J. (1983). Simultaneous amplitude and phase match of cochlear model calculations and basilar membrane vibration data. In: Mechanics of Hearing, E. de Boer and M.A. Viergever (eds), Martinus Nijhoff Publishers/Delft Univ. Press, 53–61.

    Chapter  Google Scholar 

  55. Viergever, M.A. and Diependaal, R.J. (1985). Quantitative validation of cochlear models using the LG approximation. Internal Report, Delft Univ. of Technology.

    Google Scholar 

  56. Wever, E.G. (1970). Theory of hearing, Dover, New York. Republication of 1949.

    Google Scholar 

  57. Wilson, J.P. (1974). Basilar membrane vibration data and their relation to theories of frequency analysis. In: Facts and models in hearing, E. Zwicker and E. Terhardt (eds), Springer, Berlin, 56–64.

    Chapter  Google Scholar 

  58. Wilson, J.P. and Johnstone, J.R. (1975). Basilar membrane and middle-ear vibration in guinea pig measured by capacitive probe, J. Acoust. Soc. Am. 57, 705–723.

    Article  Google Scholar 

  59. Zweig, G., Lipes, R., and Pierce, J.R. (1976). The cochlear compromise, J. Acoust. Soc. Am. 59, 975–982.

    Article  Google Scholar 

  60. Zwislocki-Moscicki, J. (1948). Theorie der Schneckenmechanik — qualitative und quantitative Analyse, Acta Otolaryng. suppl. 72.

    Google Scholar 

  61. Zwislocki, J. (1953). Review of recent mathematical theories of cochlear dynamics, J. Acoust. Soc. Am. 25, 743–751.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Viergever, M.A. (1986). Cochlear Macromechanics — a Review. In: Allen, J.B., Hall, J.L., Hubbard, A.E., Neely, S.T., Tubis, A. (eds) Peripheral Auditory Mechanisms. Lecture Notes in Biomathematics, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50038-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50038-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16095-3

  • Online ISBN: 978-3-642-50038-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics