Skip to main content

The Use of 11C-Methyl-D-Glucose for Assessment of Glucose Transport in the Human Brain; Theory and Application

  • Conference paper
Tracer Kinetics and Physiologic Modeling

Abstract

Imbalance between perfusion, transport and metabolism may determine the ultimate damage in ischemic brain disease (1,2). Therefore, for the quantitative assessment of ischemic brain disorders the knowledge of at least two parameters is necessary. One is local perfusion. The second parameter should relate to tissue metabolism, for example, to the glucose utilisation rate (3,4,5) or to the local unidirectional glucose transport rate (6,7,8,9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mies G, Hossman KA: Double tracer autoradiographic investigation of regional blood flow and glucose metabolism during spreading depression. J Cereb Blood Flow Metabol 1, Suppl 1: 94–95, 1981

    Google Scholar 

  2. Pulsinelli W, Brierley J, Duffy T, Levy D, Plum F: Ischemic neuronal damage, postischemic regional blood flow and glucose metabolism in rat brain. J Cereb Blood Flow Metabol 1, Suppl 1: 166–167, 1981

    Google Scholar 

  3. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M: The C deoxyglucose method for the measurement, of local cerebral glucose utilisation: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916, 1977

    Article  Google Scholar 

  4. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE: Tomographic measurement of local cerebral glucose metabolic rate in humans with F-Fluoro-2-deoxy-D-glucose: Validi-dation of method. Ann of Neurol 6: 371–388, 1979

    Article  Google Scholar 

  5. Kuhl DE, Phelps ME, Kowell AP, Metter EJ, Selin C, Winter J: Effects of stroke on local cerebral metabolism and perfusion: Mapping by emission computed tomography of F-FDG and N-NH3. Annals of Neurol 8: 47–60, 1980

    Article  Google Scholar 

  6. Vyska K, Freundlieb C, Hock A, Becker V, Feinendegen LE, Kloster G, Stöcklin G, Traupe H, Heiss WD: The assessment of glucose transport across the blood brain barrier in man by use of 3- C-methyl-D-glucose. J Cereb Blood Flow Metabol 1, Suppl 1: 42–43, 1981

    Google Scholar 

  7. Kloster G, Müller-Platz C, Laufer P: 3- C-methyl-D-glucose a potential agent for regional cerebral glucose utilisation. Synthesis, chromatography, and tissue distribution in mice. J Lab Comp Radiopharm 18: 855–863, 1981

    Article  Google Scholar 

  8. Vyska K, Hock A, Freundlieb C, Feinendegen LE, Kloster G, Stöcklin G: 3-(C-ll)-methyl glucose a promising agent for in vivo assessment of function of myocardial cell membrane. J Nucl Med 21: P56–P57, 1980 (Abstr.)

    Google Scholar 

  9. Heiss WD, Kloster G, Vyska K, Traupe C, Freundlieb C, Becker V, Ieinendegen LE, Stöcklin G: Regional cerebral distribution of 11C-methyl-D-glucose compared with CT perfusion patterns in stroke. J Cereb Blood Flow Metabol 1: Suppl 1: 506–507, 1981

    Google Scholar 

  10. Betz AL, Gilboe DD, Drewes LB: Effects of anoxia on net uptake and unidirectional transport of glucose into the isolat-ed dog brain. Brain Research 67: 307–316, 1974

    Article  Google Scholar 

  11. Bidder TG: Hexose translation across the blood-brain interface: configurational aspects. J Neurochem 15: 867–874, 1968

    Article  Google Scholar 

  12. Cutler RWP, Sipe JC: Mediated transport of glucose between blood and brain in the cat. Am J Physiol 120: 1182–1186, 1971

    Google Scholar 

  13. Oldendorf WH: Brain uptake of radiolabeled amino acids, amines and hexoses after arterial injection. Am J Physiol 221: 1629–1639, 1971

    Google Scholar 

  14. Agnew WF, Crone C: Permeability of brain capillaries to hexoses and pentoses in the rabbit. Acta Physiol Scand 70: 168–175, 1967

    Article  Google Scholar 

  15. Betz LA, Gilboe DD: Kinetics of cerebral glucose transport in vivo. Inhibition by 3–0-methyl-glucose. Brain Res 65: 368–372, 1974

    Article  Google Scholar 

  16. Buschiazzo PM, Terrell EB, Regen DM: Sugar transport across the blood brain barrier. Am J Physiol 219: 1505–1513, 1970

    Google Scholar 

  17. Pardridge WM, Oldendorf WH: Kinetics of blood brain barrier transport of hexoses. Biochim Biophys Acta 22: 185–186, 1956

    Article  Google Scholar 

  18. Czaky TZ, Wilson JE: The fate of 3–0–14CH3-glucose in the rat. Biochim Biophys Acta 382: 377–382, 1975

    Article  Google Scholar 

  19. Whitfield CF, Rames RS, Morgan HE: Acceleration of sugar transport in avian erythrocytes by catecholamines. J Biol Chem 249: 4181–4188, 1974

    Google Scholar 

  20. Betz LA, Gilboe DD, Yudilevich DL, Drewes L: Kinetics of unidirectional glucose transport into the isolated dog brain. Am J Physiol 225: 586–592, 1973

    Google Scholar 

  21. Vyska K, Kloster G, Feinendegen LE, Heiss WD, Stöcklin G, Höck A, Freundlieb C, Aulich A, Schuier F, Thal HU, Becker V, Schmid A:, Regional perfusion and glucose uptake determination with 11C-methyl-glucose and dynamic positron emission tomography. In Heiss WD, Phelps ME, Eds. Positron emission tomography of the brain. Springer-Verlag Heidelberg (In press)

    Google Scholar 

  22. Lund-Andersen H, Kjeldsen CS: Kinetical analysis of the uptake of glucose analogs by rat brain cortex slices from nor-normal and ischemic brain. In Levi G, Battistin L and Lajtha A, Eds. Transport phenomena in the nervous system: Physiological and pathological aspects. New York, London, Plenum Press, 1976, pp 265–272

    Chapter  Google Scholar 

  23. Obrist WD, Thompson HK, King CH, Wang HS: Determination of regional cerebral blood flow by inhalation of 133Xe. Circ Res 20: 124–135, 1967

    Article  Google Scholar 

  24. Reivich M, Alavi A, Wolf A, Greenberg JH, Fowler J, Christman D, MacGregor R, .Jones SC, London J, Schiue C, Yonekura Y: Use of 2-deoxy-D(l- C)-glucose for the determination of local cerebral glucose metabolism in humans: Variation within and between subjects. J Cereb Blood Flow Metabol 2: 307–319, 1982

    Article  Google Scholar 

  25. Phelps ME, Mazziotta JC, Huang SC: Study of cerebral function. J Cereb Blood Flow Metabol 2: 113–162, 1982

    Article  Google Scholar 

  26. Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE: Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238: E69-E82, 1980

    Google Scholar 

  27. Kennedy C, Sakurada O, Shinohara M, Jehle J, Sokoloff L: Local cerebral glucose utilisation in the normal conscious macaque monkey. Ann Neurol 4: 293–301, 1979

    Article  Google Scholar 

  28. Ingwar DA, Cronquist S, Ekberg R, Risberg J, Hoedt-Rasmus-sen K: Normal values of regional cerebral blood flow in man including flow and weight estimates of gray and white matter. Acta Neur Scand 41, Suppl 14: 72–84, 1965

    Article  Google Scholar 

  29. Ackerman RH, Correia JA, Alpert NM, Baron JD, Gouliamos A, Grotta JC, Brownell GL, Taveras JM: Positron imaging in ischemic stroke disease using compounds labeled with 150. Arch Neurol 38: 537–543, 1981

    Article  Google Scholar 

  30. Heiss WD, Vyska K, Kloster G, Traupe H, Freundlieb C, Hock A, Feinendegen LE, Stocklin G: Demonstratio of decreased functional activity of visual cortex by 11C-methylglucose and positron emission tomography. Neuroradiol 23: 45–47, 1982

    Article  Google Scholar 

  31. Reivich M, Greenberg J, Alavi A: The use of fluorodeoxy-glu-cose technique for mapping of functional neural pathways in man. Acta Neurol Scand 60, Suppl 72: 198–199, 1979

    Article  Google Scholar 

  32. Phelps ME, Mazziotta JC, Kuhl DE, Nuwer M, Packwood J, Metter J, Engel J Jr: Tomographic mapping of human cerebral metabolism, visual stimulation and deprivation. Neurology 31: 517–529, 1981

    Article  Google Scholar 

  33. Narahara HT, Özand P, Cori CF: Studies of tissue permeability VII. The effect of insulin on glucose generation and phosphorylation in frog muscle. J Biochem 235: 3370–3378, 1960

    Google Scholar 

  34. Macey RI: Mathematical models of membrane transport processes. In Andreoli TE, Hoffman JF and Fanestil DD, Eds. Physiology of membrane disorders. New York, London, Plenum Medical Book Company, 1979, pp 125–146

    Google Scholar 

  35. Mahler HR, Cordes EH: Biological Chemistry 2nd Edition, New York, Evanston, San Francisco, London, Harper and Row Publishers, 1971, pp 267–325

    Google Scholar 

  36. Segel IH: Enzyme kinetics. New York, London, Sydney, Toronto, Wiley — Interscience Publication, John Wiley, 1975, pp 34–39

    Google Scholar 

  37. Larsen OA, Lassen NA: Cerebral hematocrit in normal man. J Appl Physiol 19: 571–574, 1964

    Google Scholar 

  38. Eke A: Reflectometric mapping of microregional blood flow and blood volume in the brain cortex. J Cereb Blood Flow Metabol 2: 41–53, 1982

    Article  Google Scholar 

  39. Klitzman B, Duling BR: Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am J Physiol 237: H481-H490, 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vyska, K. et al. (1983). The Use of 11C-Methyl-D-Glucose for Assessment of Glucose Transport in the Human Brain; Theory and Application. In: Lambrecht, R.M., Rescigno, A. (eds) Tracer Kinetics and Physiologic Modeling. Lecture Notes in Biomathematics, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50036-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50036-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12300-2

  • Online ISBN: 978-3-642-50036-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics