Skip to main content

Pharmacokinetic Models and Positron Emission Tomography: Studies of Physiologic and Pathophysiologic Conditions

  • Conference paper
Tracer Kinetics and Physiologic Modeling

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 48))

Abstract

Because of the structurally and functionally heterogeneous nature of the brain, it is necessary to measure changes in physiologic and biochemical parameters in the human brain on a regional basis. Such information is important in furthering our understanding of the normal function of the brain and the derangements that occur in various pathologic conditions. The development of the Kety-Schmidt technique for the quantitative measurement of cerebral blood flow in man, made it possible to determine the average rates of glucose and oxygen utilization and blood flow in the brain as a whole (1). Using these same principles a method to measure hemispheric changes in these parameters has been developed (2). Regional methods for the determination of cerebral blood flow using diffusable tracers have also been developed (3–5). These methods, however, do not provide 3-dimensional resolution by which it is possible to determine the physiologic and metabolic parameters in specific structural and functional subunits of the brain. With the development of the 18F-fluorodeoxyglucose technique it became possible to do this in terms of glucose metabolism in the human brain (6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kety, SS, Schmidt, CF: The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure and normal values. J Clin Invest 27:476–483, 1948.

    Article  Google Scholar 

  2. Meyer, JS, Shinohara, Y: A method for measuring cerebral hem-ispehric blood flow and metabolism. Stroke 1:419–431, 1970.

    Article  Google Scholar 

  3. Lassen NA, Ingvar DH: Regional cerebral blood flow measurement in man. Arch Neurol 9:615–622, 1963.

    Article  Google Scholar 

  4. Lassen NA, Ingvar DH: The blood flow in the cerebral cortex determined by radioactive krypton-85. Experientia 17:42, 1961.

    Article  Google Scholar 

  5. Obrist WD, Thompson HK, Wang HS, Wilkinson WE: Regional cerebral blood flow estimated by 133Xe inhalation. Stroke 6: 245–256, 1975.

    Article  Google Scholar 

  6. Reivich M, Kuhl D, Wolf A, Greenberg G, Phelps M, Ido T, Casella, V, Fowler, J, Hoffman, E, Alavi, A, Som, P and Sokoloff, L: The (18F) Fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137, 1979.

    Article  Google Scholar 

  7. Sokoloff L, Reivich M, Kennedy C, DesRosiers MH. Patlak CS, Pettigrew, KD, Kakurada, D, Shinohara, M: The (14C) Deoxy-glucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916, 1977.

    Article  Google Scholar 

  8. Wick AN, Drury DR, Morita TN: 2-Deoxyglucose-A metabolic block for glucose. Proc Soc Exp Biol Med 89:579–582, 1955

    Google Scholar 

  9. Sols A, Crane RK: Substrate specificity of brain hexokinase. J Biol Chem 210:581–595, 1954.

    Google Scholar 

  10. Tower DB: The effects of 2-deoxy-D-glucose on metabolism of slices of cerebral cortex incubated in vitro. J Neurochem 3: 185–205, 1958.

    Article  Google Scholar 

  11. Bachelard HS: Specificity and kinetic properties of monosaccharide uptake into guinea pig cerebral cortex in vitro. J Neurochem 18:213–222, 1971.

    Article  Google Scholar 

  12. Horton RW, Meldrun BS, Bachelard HS: Enzymic and cerebral metabolic effects of 2-deoxy-D-glucose. J Neurochem 21:507–520, 1973.

    Article  Google Scholar 

  13. Bidder TG: Hexose translocation across the blood brain interface: Configurational aspects. J Neurochem 15:867–874, 1968.

    Article  Google Scholar 

  14. Hers HG, DeDuve C: Le système hexose phosphatasique: Repartition de l’activité glucose-6-phosphatasique dans les tissus. Bull Soc Chim Biol 32:20–29, 1950.

    Google Scholar 

  15. Raggi F, Kronfeld DS, Kleiber M: Glucose-6-phosphatase activity in various sheep tissues. Proc Soc Exp Biol Med 105:485–486, 1960.

    Google Scholar 

  16. Prasannan KG, Subrahmanyan D: Effect of insulin on the synthesis of glycogen in cerebral cortical slices of alloxan diabetic rats. Endocrinology 82:1–6, 1968.

    Article  Google Scholar 

  17. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff, L, Kuhl DE: Tomographic measurement of local cerebral glucose metabolic rate in humans with (F18)2-fluoro-2-deoxy-D-glucose: Validation of method. Ann Neurol 6:371–388, 1979.

    Article  Google Scholar 

  18. Bessell EM, Foster AB, Westwood JH: The use of deoxyfluoro-D-glucopyranoses and related compounds in a study of yeast hex-okinase specificity. Biochem J 128:199–204, 1972.

    Google Scholar 

  19. Bessel EM, Courtenay VD, Foster AB, Jones M, Westwood JH: Some in vivo and in vitro antitumor effects of deoxygluoro-D-glucopyranoses. Eur J Cancer 9:463–470, 1973.

    Google Scholar 

  20. Gallagher BM, Fowler JS, Gutterson NJ, MacGregor RR, Wan CN and Wolf AP: Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of (l8F)2-deoxy-2-fluoro-D-glucose. J Nucl Med 19: 1154–1161, 1978.

    Google Scholar 

  21. Coe EL: Inhibition of glycolysis in ascites tumor “cells pre-incubated with 2-deoxy-2-fluoro-D-glucose. Biochem Biophys Acta 264:319–327, 1972.

    Article  Google Scholar 

  22. Ido T, Wan CN, Casella V, Fowler JS, Wolf AP, Reivich M and Kuhl D: Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J Labeled Comp Radiopharma-ceut 14:175–183, 1978.

    Article  Google Scholar 

  23. Herman GT: Image Reconstruction from Projections: The Fundamentals of Computerized Tomography. New York, Academic Press. 1980.

    MATH  Google Scholar 

  24. Fletcher R, Powell MJD: A rapid descent method for minimization. Comp J 6:163–168, 1963

    Article  MathSciNet  MATH  Google Scholar 

  25. Gear CW: The automatic integration of ordinary differential equations. Comm Assoc Comput Mach 14:176–179, 1971.

    Google Scholar 

  26. Kennedy C, Sakurada O, Shinohara M, Jehle J, Sokoloff L: Local cerebral glucose utilization in the normal conscious macaque monkey. Ann Neurol 4:293–301, 1978.

    Article  Google Scholar 

  27. Reivich M, Alavi A, Wolf A, Greenberg JH, Fowler J, Christ-man D, MacGregor R, Jones SC, London J, Shiue C and Yonekura Y: Use of 2-deoxy-D-(l-11C) Glucose for the determination of local cerebral glucose metabolism in humans: variation within and between subjects. J CBF & Metab 2:307–319, 1982.

    Google Scholar 

  28. Greenberg J, Reivich M, Alavi A, Goldberg H: Evaluation of the lumped constant and the kinetic constants for fluorodeoxy-glucose in man. Stroke 10:485, 1979.

    Google Scholar 

  29. Sunda S, Shinohara M, Miyaoka M, Kennedy C and Sokoloff L: Local cerebral glucose utilization in hypoglycemia. J Cereb Blood Flow Metab 1:Suppl. 1:S62, 1981.

    Google Scholar 

  30. Schuier F, Orzi F, Suda S, Kennedy C and Sokoloff L: The lumped constant for the (14C) deoxyglucose method in hyperglycemic rats. J Cereb Blood Flow Metab 1:Suppl 1:S63, 1981.

    Google Scholar 

  31. Ginsberg MS and Reivich M: Use of the 2-deoxyglucose method of local cerebral glucose utilization with abnormal brain. Evaluation of the lumped constant during ischemia. Stroke 10:4–83, 1981.

    Google Scholar 

  32. Sokoloff L: Localization of Functional Activity in the Central Nervous System by Measurement of Glucose Utilization with Radioactive Deoxyglucose. J of CBF and Metab 1:7–36, 1982.

    Google Scholar 

  33. Reivich M, Alavi A and Greenberg J: Unpublished observations.

    Google Scholar 

  34. Frackowiak RSJ, Lenzi GL, Jones T and Heather JD: Quantitative Measurement of Regional Cerebral Blood Flow and Oxygen Metabolism in Man Using 150 and Positron Emission Tomography: Theory, Procedure and Normal Values. J of Computer Asst Tomograph 4:727, 1980.

    Article  Google Scholar 

  35. Jones T, Chesler DA, Ter-Pogossian MM: The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man. Br J Radiol 49:339–343, 1976.

    Article  Google Scholar 

  36. Subramanyan R, Alpert NM, Hoop B Jr, Brownell GL, Taveras JM: A model for regional cerebral oxygen distribution during continuous inhalation of 1502, C150 and C15O2. J Nucl Med 19:48–53, 1978.

    Google Scholar 

  37. West JB, Dollery CT: Uptake of oxygen-15 labeled CO2 compared with carbon-11-labeled CO2 in the lung. J Appl Physiol 17: 9–13, 1962.

    Google Scholar 

  38. Jones SC, Reivich M, Greenberg JH: Error propagation in the determination of cerebral blood flow and oxygen metabolism with the inhalation of Cl502 and 1502. Acta Physiol Scand 60:Suppl 72:228–229, 1979.

    Google Scholar 

  39. Jones SC, Greenberg JH and Reivich M: Error Analysis for the Determination of Cerebral Blood Flow with the Continuous Inhalation of 15O-Labeled Carbon Dioxide and Positron Emission Tomography. J of Computer Asst Tomography 6:116–124, 1982.

    Article  Google Scholar 

  40. Huang SC, Phelps ME, Hoffman EJ, Kuhl DE: A theoretical study of quantitative flow measurements with constant infusion of short lived isotopes. Phys Med Biol 24:1151–1161, 1979.

    Article  Google Scholar 

  41. Eichling JO, Raichle ME, Grubb RL Jr, Ter-Pogossian MM: Evidence of the limitations of water as a freely diffusible tracer in brain of the rhesus monkey. Circ Res 35:358–364, 1974

    Article  Google Scholar 

  42. Raichle ME, Eichling JO, Straatmann MG, Welch MJ, Larson KB, Ter-Pogossian MM: Blood-brain barrier permeability of 11Clabeled water. Am J Phsyiol 230:543–552, 1976.

    Google Scholar 

  43. Lammertsma AA, Heather JD, Jones T, Frackowiak RSJ, Lenzi GL: A Statistical Study of the Steady State Technique for Measuring Regional Cerebral Blood Flow and Oxygen Utilization Using 15O. J Comput Assist Tomogr 6:566–573, 1982.

    Article  Google Scholar 

  44. Greenberg J, Reivich M, Alavi A, Hand P, Rosenquist A, Rintelmann W, Stein A, Tusa R, Dann R, Christman D, Fowler J, MacGregor B and Wolf A: Metabolic mapping of functional activity in human subjects with the (18F)-fluorodeoxyglucose technique. Science 212:678–680, 1981.

    Article  Google Scholar 

  45. Holmes G: Disturbances of vision by cerebral lesions. Br, J Ophthal 2:353–384, 1918.

    Article  Google Scholar 

  46. Spaldins JMK: Wounds of the visual pathway. J Neurol Neuro-surg Psychiat 15:99–109, 1952.

    Article  Google Scholar 

  47. Spaldins JMK: Wounds of the visual pathway. J Neurol Neuro-surg Psychiat 15: 169–183, 1952.

    Article  Google Scholar 

  48. Teuber NG, Battersby WS and Bender MD: Visual field defects after penetrating missile wounds of the brain, pp 89–98. Harvard University Press, Cambridge MA, 1975.

    Google Scholar 

  49. Polyak S: The vertebrate visual system. Univeristy of Chicago Press. 1957.

    Google Scholar 

  50. Brindley GS and Lewis WS: The sensations produced by electrical stimulation of the visual cortex. J Physiol Lond. 196: 479–493, 1968.

    Google Scholar 

  51. Dobelle WH, Mladejavk MF and Girvin JP: Artificial vision for the blind. Electrical stimulation offers hope for functional prosthesis. Science 183:440–444, 1974.

    Article  Google Scholar 

  52. Phelps ME, Mazziotta JC, Kuhl DE, Nuwer M, Packusood J, Metter J and Engel J: Tomographic mapping of human cerebral metabolism: Visual stimulation and deprivation. Neurology: 31:517–529, 1981.

    Article  Google Scholar 

  53. Reivich M, Cobbs W, Rosenquist A, Stein A, Schatz N, Savino P, Alavi A and Greenberg J: Abnormalities in local cerebral glucose metabolism in patients with visual field defects. Cereb Blood Flow Metab 1: Suppl 1:S 471–472, 1981.

    Google Scholar 

  54. Benevento LA and Rezak M: The cortical projection of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey. An autoradiographic study. Brain Res 108:1–24, 1976.

    Article  Google Scholar 

  55. Clark WE and LeGross M: The structure and connections of the thalamus. Brain 55:406–70, 1932.

    Article  Google Scholar 

  56. Trojanowski J and Jacobson S: Areal and laminar distribution of some pulvinar cortical efferents in the rhesus monkey. J Comp Neurol 169:371–392, 1976.

    Article  Google Scholar 

  57. Cullen, JD, Berlin CI, Hughes LF et al: Proceedings of a Symoposium on Central Auditory Processing Disordres: University of Nabraska Medical Center, Omaha, 1975, 108–127.

    Google Scholar 

  58. Aetken LM and Webster WR: Medial geniculate body of the cat: organization and responses to tonal stimuli of neurons in ventral division. J Neurophysiol 35:365–380, 1972.

    Google Scholar 

  59. Mazziotta JC, Phelps ME, Carson RE and Kuhl DE: Tomographic mapping of human cerebral metabolism. Auditory Stimulation. Neurol 32:921–937, 1982.

    Article  Google Scholar 

  60. Seashore CE, Lewis D and Sactveit JG: Seashore measures of musical talents. Psychological Corp New York, series B, 1960.

    Google Scholar 

  61. Penfield WF and Rasmussen AT: The cerebral cortex of man: a clinical study of localization of function. Macmillan, NY. 1950.

    Google Scholar 

  62. Mountcastle VB: Modality and topographic properties of single neurons of cats’ somatic sensory cortex. J Neurophysiol 20: 408–435, 1957.

    Google Scholar 

  63. Powell TPS and Mountcastle VB: Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull Johns Hopkins Hosp 105: 133–162, 1959.

    Google Scholar 

  64. Whitsel BD, Dreyer DE and Roppolo JR: Determinants of body reprsentataion in postcentral gyrus of macaques. J Neurophysiol 34:1018–1034, 1971.

    Google Scholar 

  65. Penfield WG and Boldray E: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443, 1937.

    Article  Google Scholar 

  66. Woolsey CN, Erickson TC, Gilson WG: Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J Neurosurg 51:476–506, 1979.

    Article  Google Scholar 

  67. Turner DR: Miller Analogies Test. Arco, New York. 1973.

    Google Scholar 

  68. Benton Al, Varney WR and Hamsher K: Judgement of line orientation, Form V University of Iowa Press, 1975, Iowa City.

    Google Scholar 

  69. Levy-Agresti J, Sperry RW: Differential Perceptual Capacities in major and minor hemispheres. Proc Natl Acad: Science 61:1151, 1968.

    Google Scholar 

  70. Benton AL: “The Minor Hemisphere”. Journal Hist Med All Sci 27:5–14, 1972.

    Article  Google Scholar 

  71. Hecaen H and Albert ML: Human Neuropsychology. Wiley, New York 1978.

    Google Scholar 

  72. Kinabourne M: Eye and Head Turning Indicates Cerebral Lateralization. Science 176:539–541, 1972.

    Article  Google Scholar 

  73. Bakan P, Srorad D: Resting EEG Alpha & Asymmetry of Reflecting lateral eye movements. Nature 223:975–976, 1969.

    Article  Google Scholar 

  74. Gur RE, Gur RC and Harris LJ: Cerebral Activation as measured by subjects’ lateral eye movements, is influenced by Experimenter location. Neuropsychol 13:35–44, 1975.

    Article  Google Scholar 

  75. Gur RC and Reivich M: Cognitive task effects on hemispheric blood flow in humans: evidence for individual differences in hemispheric activation. Brain Lang 9:78–93, 1980.

    Article  Google Scholar 

  76. Gur RC, Gur RE, Obrist WD, Hungerbuhler JP, Younkin D, Rosen AD, Skolnick BE and Reivich M: Sex and Handedness Differences in Cerebral Blood Flow During Rest and Cognitive Activity. Science 217:659–661, 1982.

    Article  Google Scholar 

  77. Heilman KM and Van Dea A: Right hemispheric dominance for mediating cerebral activation. Neuropsychol 17:315–321, 1979.

    Article  Google Scholar 

  78. Mesulam MM: A cortical network for directed attention and unilateral neglect. Ann Neurol 10:309–325, 1981.

    Article  Google Scholar 

  79. Trevarthen C: In: Cerebral Interhemispheric Relations (eds.) Cernacvek J and Podivinsky F. Publishing House Solvak Academy Sciences, 1972.

    Google Scholar 

  80. Ehrlichman H and Weinberger A: Psych Bull 85:1080–1101, 1978.

    Article  Google Scholar 

  81. Gur RE and Gur RC: Letter to the Editor: Reply-regarding Cerebral Activation, as measured by subjects’ lateral eye movements, is influenced by experimenter location. Arch Gen Psych 36:493–494, 1973.

    Google Scholar 

  82. DeRenzi E and Faglioni P: The comparative efficiency of intelligence and vigilance tests detecting hemispheric damage. Cortex 1:410–433, 1965.

    Google Scholar 

  83. Diamond S: Depletion of attentional capacity after total commissurotomy in man. Brain 99:347–356, 1976.

    Article  Google Scholar 

  84. Diamond S: Performance by split-brain humans on lateral -ized vigilance tasks. Cortex 15:43–50, 1979.

    Google Scholar 

  85. Murphy EH and Venables PH: Ear asymmetry in the threshold of fusion of two clicks: A signal detection analysis. Q J of Experimental Psychology 22:288–300, 1970.

    Article  Google Scholar 

  86. Heilman KM, Schwartz HD and Watson RT: Hypoarousal in patients with the neglect syndrome and emotional indifference. Neurology 28:229–232, 1978.

    Article  Google Scholar 

  87. Denny-Brown D and Chambers RA: The parietal lobe and behavior. In: The Brain and Human Behavior. Research Publications of the Association for Research of Nervous and Mental Diseases 36:35–117. Baltimore: Williams & Wilkins, 1958.

    Google Scholar 

  88. Heilman KM, Pandya DN and Geshwind N: Trimodal Inattention following Parietal Lobe Ablations. Trans Am Neurol Assoc 95:259, 1970.

    Google Scholar 

  89. Mesulam MM, Van Hoesen GW, Pandya DN, Geschwind N: Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: A study with a new method for horseradish peroxidase histochemistry. Brain Res 136: 393–414, 1977.

    Article  Google Scholar 

  90. Mesulam MM: A cortical network for directed attention and unilateral neglect. Annals of Neurology 10:309–325, 1981.

    Article  Google Scholar 

  91. Mountcastle VB, Lynch JC, Georgopoulos A, Kakata H, Acuna C: Posterior Parietal Association Cortex of the Monkey: Command Functions for Operations Within Extrapersonal Space. J Neuro-phys 38:871–908, 1975.

    Google Scholar 

  92. Mountcastle VB: Brain mechanisms for directed attention. J R Soc Med 71:14–28, 1978.

    Google Scholar 

  93. Brain WR: Visual disorientation with special reference to lesion of the Right Cerebral Hemisphere. Brain 64:244, 1941.

    Article  Google Scholar 

  94. Hecaen H, Penfield W, Bertrand C and Malmo R: The syndrome of apractognosia due to lesions of the minor cerebral hemisphere. AMA Archives of Neurology and Psychiatry 75:400–434, 1956.

    Article  Google Scholar 

  95. DeRenzi E, Faglioni P and Scotti G: Hemispheric contribution to exploration of space through the visual and tactil modality. Cortex 6:191–203, 1970.

    Google Scholar 

  96. Gainotti G, Messerli P, Tissot R: Qualitative analysis of unilateral spatial neglect in relation to laterality of cerebral lesions. J Neurol Neurosurg Psychiat 35:545–550, 1972.

    Article  Google Scholar 

  97. Diamond S: Depletion of attentional capacity after local commissurotomy in man. Brain 99:347–356, 1976.

    Article  Google Scholar 

  98. Diamond S: Performance by split brain humans on lateral ized vigilance tasks. Cortex 15:43–50, 1979.

    Google Scholar 

  99. Brodai A: Neurological Anatomy in Relation to Clinical Medicine Oxford University Press, New York, 1981.

    Google Scholar 

  100. Williams PL and Warwick R: Functional Neuroanatomy of Man. WB Saunders, Philadelphia, 1975.

    Google Scholar 

  101. Hecaen H and Albert ML: Human Neuropyschology, John Wiley & Sons, New York, Chichester Brisbone, Toronto, 1978.

    Google Scholar 

  102. Levy-Agresti J and Sperry RW: Differential Perceptual Capacities in Major & Minor hemispheres. Proc Natl Acad Sci 61: 1151, 1968.

    Google Scholar 

  103. Levy J, Trevarthen CB and Sperry RW: Perception of Bilateral Chemeric figures following hemispheric deconnexion. Brian 95:61–78, 1972.

    Article  Google Scholar 

  104. Bogen JE: The other side of the brain IV; The AIP ratio. Bull Los-Angeles Neurol Soc 34:135, 1969.

    Google Scholar 

  105. Benton AL: The “minor” hemisphere. J Hist Med Allied Sci 27: 5, 1972.

    Article  Google Scholar 

  106. Nauta WJH: Connections of the frontal lobe with the limbic system In: Surgical Approaches in Psychiatry. (Eds) LV Laitenen and KE Livingston. Baltimore, MD, University Park Press, 1972.

    Google Scholar 

  107. Kuhl DE, Phelps ME, Kowell AP, Metter EJ, Selin C and Winter J: Effects of stroke on local cerebral metabolism and perfusion: mapping by emission computed tomography of 18FDG and 13NH3. Ann Neurol 8:47–60, 1980.

    Article  Google Scholar 

  108. Ginsberg MS, Reivich M, Giandomenico A and Greenberg JH: Local glucose utilization in acute focal cerebral ischemia; local dysmetabolism and diaschisis. Neurology 27:104–148, 1977.

    Article  Google Scholar 

  109. Pulsinelli WA and Duffy TE: Local cerebral glucose metabolism during controlled hypoxemia in rats. Science 204:626–629, 1979.

    Article  Google Scholar 

  110. Spatz M, Mrsulja BB, Micic D, Mrsulja BJ and Klatzo J: Ischemic and postischemic effects on 2-deoxy-D-(H) glucose uptake in cerebral capillaries. Brain Res 120:141–145, 1977.

    Article  Google Scholar 

  111. Cohen PJ, Alexander SC and Smith TC: Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man. J Appl Physiol 23:183–189, 1967.

    Google Scholar 

  112. Norberg K and Siesjo BK: Cerebral metabolism in hypoxic hypoxia. I. Pattern of activation of glycolysis: a re-evaluation. Brain Res 8:31–44, 1975.

    Article  Google Scholar 

  113. Lenzi GL, Frackowiak RSJ and Jones T: Cerebral Oxygen Metabolism and Blood Flow in Human Cerebral Ischemic Infarction Cerebral Ischemic Infarction. Journal of CBF and Metab 2: 321–335, 1982.

    Google Scholar 

  114. Baron JC, Bousser MG, Comar D, Castaigne P: “Crossed Cerebellar Diaschisis” in Human Supratentorial Brian Infarction. Trans Neurol Assoc 105:459–461, 1980.

    Google Scholar 

  115. Kushner M, Reivich M, Alavi A, Dann R, Hurtig H and Greenberg J: Contralateral Cerebellar Hypometabolism following Cerebral Hemispheric Insult: A Positron Emission Tomographic Study. Ann Neurol 12:88, 1982.

    Google Scholar 

  116. Baron JC, Lebrun-Grandie Ph, Collard Ph, Crouzel C, Mestelan G and Bousser MG: Noninvasive Measurement of Blood Flow, Oxygen Consumption and Glucose Utilization in the Same Brain Regions in Man by Positron Emission Tomography: Concise Communication. J. Nucl Med 23:391–399, 1982.

    Google Scholar 

  117. Howse DC, Caronna JJ, Duffy TE, Plum F: Cerebral energy metabolism, pH and blood flow during seizures in the cat. Am J Physiol 227:1444–1451, 1974.

    Google Scholar 

  118. Ingvar DH: Regional cerebral blood flow in focal cortical epilepsy. Stroke 4:359–360, 1973.

    Article  Google Scholar 

  119. Plum F, Posner JB, Troy B: Cerebral metabolic and circulation responses to induce convulsions in animals. Arch Neurol 18: 1–13, 1968.

    Article  Google Scholar 

  120. Plum F, Howse DC, Duffy TE: Metabolic effects of seizures. In Plum F (Ed.) Brain Dysfunction in Metabolic Disorders. New York, Raven, 1974, 53:141–157.

    Google Scholar 

  121. Collins RC, Kennedy C, Sokoloff L, Plum F: Metabolic anatomy of focal motor seizure. Arch Neurol 33:536–542, 1976.

    Article  Google Scholar 

  122. Kennedy C, DesRosiers MH, Jehle J, Reivich M, Sharp F and Sokoloff L: Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with (14C) de-oxyglucose. Science 187:850–853, 1975.

    Article  Google Scholar 

  123. Hougaard K, Oikawa T, Sveinsdottir E, Skinhøj E, Ingvar DH, Lassen NA: Regional cerebral blood flow in focal cortical epilespy. Arch Neurol 33:527–535, 1976.

    Article  Google Scholar 

  124. Ingvar DH: rCBF in focal cortical epilepsy. In Langfitt TW, McHenry LC, Jr, Reivich M, Wollman H (Eds.) Cerebral Circulation and Metabolism. New York, Springer-Verlag, 1975, 361–363.

    Chapter  Google Scholar 

  125. Lavy S, Melamed E, Portnoy Z, Carmon A: Interictal regional cerebral blood flow in patients with partial seizure. Neurology 26:418–422, 1976.

    Article  Google Scholar 

  126. Sakai F, Meyer JS, Naritomi H, Hsu MG: Regional cerebral blood flow and EEG in patients with epilepsy. Arch Neurol 35:648–657, 1978.

    Article  Google Scholar 

  127. Kuhl DE, Engel J, Phelps ME, Selin C: Epileptic patterns of local metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3. Ann of Neurol 8:348–360, 1980.

    Article  Google Scholar 

  128. Phelps ME, Hoffman EJ, Raybaud C: Factors which affect cerebral uptake and retention of 13NH3. Stroke 8:694–702, 1977.

    Article  Google Scholar 

  129. Pope A: Perspectives in neuropathology. In Jasper AS, Ward HH, Pope A (Eds.) Basic Mechanisms of the Epilepsies. Boston, Little Brown, 1969, 773–781.

    Google Scholar 

  130. Woodbury DM, Kemp JW: Initiation, propagation and arrest of seizure. In Mrsulja BB, Rakic ZM, Klatzo I (Eds.) Pathophysiology of cerebral energy metabolism. Plenum, NY, 1967, 313–351.

    Google Scholar 

  131. Prince DA, Wilder BJ: Control mechanisms in cortical epileptogenic foci. Arch Neurol 16:194–202, 1967.

    Article  Google Scholar 

  132. Meyers JS, Gotoh F, Favale E: Cerebral metabolism during epileptic seizures in man. Electroencephalogr Clin Neuro-physiol 21:10–22, 1966.

    Article  Google Scholar 

  133. Penfield W, Von Santha K, Cirriani A: Cerebral blood flow during induced epileptiform seizures in animals and man. J Neurophysiol 2:257–267, 1939.

    Google Scholar 

  134. Posner JB, Plum F, Van Posnak A: Cerebral metabolism during electrically induced seizures in man. Arch Neurol 20:388–395, 1969.

    Article  Google Scholar 

  135. Engel J, Rausch R, Leib J, Kuhi DE, Crandall PE: Re-evalua-tion of criteria for localizing the epileptic focus in patients considered for surgical therpay of epilepsy. Epilepsia 21:184–185, 1980.

    Google Scholar 

  136. Crandall PH: Developments in direct recordings from epileptogenic regions in the surgical treatment of partial epilepsies. In Brazier MAB (Ed.) Epilepsy, Its Phenomena in Man. New York, Academic Press, 1973, 287–310.

    Google Scholar 

  137. Falconer MA, Davidson S: The rationale of surgical treatment of temporal lobe epilepsy with particular reference to childhood and adolescence. In Harris P, Mawdsley C (Eds.) Epilepsy, Proceedings of the Hans Berger Centenary Symposium. Edinburgh, London, New York/Livingstone, 1974.

    Google Scholar 

  138. Walter RD: Tactical considerations leading to surgical treatment of limbic epilepsy. In Brazier MAB (Ed.) Epilepsy, Its Phenomena in Man. New York, Academic Press, 1973, 99–119.

    Google Scholar 

  139. Falconer MA, Driver MV and Serafetinides EA: Temporal lobe epilepsy due to distant lesions; two cases revealed by operation. Brain 85:521–534, 1982.

    Article  Google Scholar 

  140. Ludwig Gl, Ajmone-Marsan C: Clinical ictal patterns in epileptic patients with occipital electroencephalograph foci. Neurology 25:463–471, 1975.

    Article  Google Scholar 

  141. Freyhan FA, Woodford RB, Kety SS: Cerebral blood flow and metabolism in psychosis of senility. J Nerv Ment Dis 113: 449–456, 1951.

    Google Scholar 

  142. Lassen NA, Munck O, Tottery ER: Mental function and cerebral oxygen consumption in organic dementia. Arch Neurol Pyschi-at 77:126–133, 1957.

    Article  Google Scholar 

  143. Lassen NA, Feinberg I, Lane MH: Bilateral studies of cerebral oxygen uptake in young and aged normal subjects and in patients with organic dementia. J Clin Invest 39:491–500, 1960.

    Article  Google Scholar 

  144. Sokoloff L: Cerebral circulartory and metabolic changes associated with aging. Res Pub! Assoc Ment Dis 41:237–254, 1966.

    Google Scholar 

  145. Gottstein U, Held K, Muller W, Berghoff W: Utilization of ketone bodies by the human brain. In Meyer JS, Reivich M, Lechner H (Eds.) Research on the Cerebral Circulation, 5th International Salzburg Conference. Springerfield, IL, 1970, 137–145.

    Google Scholar 

  146. Obrist WD, Chivian E, Cronquvist S, Ingvar DH: Regional cerebral blood flow in senile and presenile dementia. Neurology 20:315–322, 1970.

    Article  Google Scholar 

  147. Ingvar DH, Gustafson L: Regional cerebral blood flow in organic dementia with early onset. Acta Neurol Scand 43:42–73, 1970.

    Google Scholar 

  148. Simard D, Olesen J, Paulson OB, Lassen NA, Skinhøj E: Regional cerebral blood flow and its regulation in dementia. Brain 94:273–288, 1971.

    Article  Google Scholar 

  149. Hagberg B, Ingvar DH: Cognitive reduction in presenile dementia related to regional abnormalities of the cerebral blood flow. Br J Psychiat 128:209–222, 1976.

    Article  Google Scholar 

  150. Hagberg B: Defects of immediate memory related to the cerebral blood flow distribution. Brain Lang 5:366–377, 1978.

    Article  Google Scholar 

  151. Gustafson L, Hagberg B, Ingvar DH: Speech disturbances in presenile dementia related to local cerebral blood flow abnormalities in the dormant hemisphere. Brain Lang 5:102–118, 1978.

    Article  Google Scholar 

  152. Obrist WD, Thompson HK, King CH, Wang HS: Determination of regional cerebral blood flow by inhalation of 133Xe. Circ Res 20:124–135, 1967.

    Article  Google Scholar 

  153. Wang HS, Busse BW: Correlates of regional cerebral blood flow in elderly community residents. In Harper AM, Jennett WB, Miller JD, Rowan JO (Eds.) Blood Flow and Metabolism in the Brain. London: Chruchill/Livingstone, 1975, 817–818.

    Google Scholar 

  154. Baer PE, Faibish GM, Meyer JS, Mathew NT and Rivera VM: Neuropsychological correlates of hemispheric and regional cerebral blood flow in dementia. In Meyer JS, Lechner H and Reivich M (Eds.) Cerebral Vascular Disease. 7th Int. Conf. Salzburg. Theieme, Stuttgart, 1976, 100–106.

    Google Scholar 

  155. Lavy S, Melamed E, Benton S, Cooper G, Rinot Y: Bihemis-pheric decreases of regional blood flow in dementia: correlates with age-matched normal controls. Ann Neurol 4:445–450, 1978.

    Article  Google Scholar 

  156. Alavi A, Ferris S, Wolf A, Reivich M, Farkas T, Dann R, Christman D, Fowler J: Determination of cerebral metabolism in senile dementia using F-18-deoxyglucose and positron emission tomography. J Nucl Med 21:21, 1980.

    Google Scholar 

  157. Alavi A, Ferris S, Wolf A, Christman D, Fowler J, MacGregor R, Farkas T, Greenberg J, Dann R, Reivich M: Determination of cerebral metabolism in dementia using F-18 deoxyglucose and positron emission tomography. Satellite-symposium on physiological and pathophysiological aspects of the aging brain. Experimental Brain Research, Springer-Verlag, Heidelberg, 1982.

    Google Scholar 

  158. Kuhl DE, Metter EJ, Riege WH and Phelps ME: Effects of human aging on patterns of local cerebral glucose utilization determined by the (18F) fluorodeoxyqlucose method. J CBF and Metab 2:163–171, 1982.

    Google Scholar 

  159. Frackowiak RSJ, Pozzilli C, Legg NJ, DuBoulay GH, Marshall J, Lenzi GL, Jones T: A prospective study of regional cerebral blood flow and oxygen utilization in dementia using positron emission tomography and oxygen-15. J CBF and Metab l:(Suppl 1):S453, 1981.

    Google Scholar 

  160. Frackowiak RSJ, Pozzilli C, Legg NJ, DuBoulay GH, Marshall J, Lenzi GL and Jones T: Regional Cerebral Oxygen Supply And Utilization In Dementia. Brain 104:753–778, 1981.

    Article  Google Scholar 

  161. Bustany P, Sargent T, Suadubray JM, Henry JF, Cumar D: Regional human brain uptake and protein incorporation of 11C-L-Methionine studied in vivo with PET. J CBF and Metab l:(Suppl 1):S17, 1981.

    Google Scholar 

  162. Farkas T, Reivich M, Alavi A, Greenberg J, Fowler J, MacGregor R, Christman D, Wolf A: The application of 18F-2-deoxy-2-D-glucose and positron emission tomography in the study of psychiatric conditions. In Passoneau JV, Hawkins RA, Lust WD, Welsh FA (Eds.) Cerebral Metabolism and Neurological Function. Williams and Wilkins, Balitmore, 1980, 403–408.

    Google Scholar 

  163. Buchsbaum MS, Kessler R, Bunney WE, Cappelletti J, Coppolo R, Van Kammen DP, Rigal F, Waters R, Sokoloff L, Ingvar D: Simultaneous electroencephalography and cerebral glucography with positron emission tomography (PET) in normals and patients with schizophrenia. J CBF and Metab 1: (Suppl 1):S457, 1981.

    Google Scholar 

  164. Buchsbaum MS, Ingvar DH, Kessler R, Waters RN, Cappelletti J, Van Kammen DP, King CA, Johnson JL, Manning RG, Flynn RW, Mann LS, Bunney WE, Jr, Sokoloff L: Cerebral Glyco-graphy With Positron Tomography Use in Normal Subjects and in Patients With Schizophrenia. Arch Gen Psychiatry 39: 251–259, 1982.

    Article  Google Scholar 

  165. Ingvar D: Abnormal distribution of cerebral activity in chronic schizophrenia: A neurophysiological interpretation. In Baxter CF and Melnechuck T (Eds.) Perspectives in Schizophrenia Research. New York, Raven Press, 1980, 107–125.

    Google Scholar 

  166. Lidsky T, Weinhold P, Levine F: Implications of basal ganglionic dysfunction for schizophrenia. Biol Psychiatry 14: 3–12, 1979.

    Google Scholar 

  167. Bowman M, Lewis MS: Sites of subcortical damage in disease which resembles schizophrenia, Neuropsychologia 18:597–601, 1980.

    Article  Google Scholar 

  168. Lee T, Seeman P: Elevation of brain neuroleptic/dopamine receptors in schizophrenia. Am J Psychiatry 137:191–197, 1980.

    Google Scholar 

  169. Lee T, Seeman P, Farley IJ, Hornydeiwicz 0: Binding of 3H-apomorphine in schizophrenic brains. Nature 274:897–900, 1978.

    Article  Google Scholar 

  170. Owen F, Crow TJ, Poulter M, Cross AJ, Longden A, Riley GJ: Increased dopamine-receptor sensitivity in schizophrenia. Lancet 1:223–226, 1978.

    Article  Google Scholar 

  171. DiChiro G, DeLapaz R, Smith B, Kornblith P, Sokoloff L, Brooks R, Blasberg R, Cummins C, Kessler R, Wolf AP, Fowler J, London W, Sever J: 18F-2-fluoro-2-deoxyglucose positron emission tomography of human cerebral gliomas. J CBF and Metab l:(Suppl 1):S11, 1981.

    Google Scholar 

  172. DiChiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, Patronas NJ, Kufta CV, Kessler RM, Johnston GS, Manning RG, Wolf AP: Glucose Utilization of Cerebral Gliomas Measured by (18f) Fluorodeoxyglucose and Positron Emission Tomography. Neurology 32:1323–1329, 1982.

    Article  Google Scholar 

  173. Patronas NJ, DiChiro G, Brooks RA, DeLaPaz RL, Kornblith PL, Smith BH, Rizzoli HV, Kessler RM, Manning RG, Channing M, Wolf AP, O’Connor CM: Work in Progress: (l8F)fluorodeoxy-glucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology 144:885–889, 1982.

    Google Scholar 

  174. Lammertsma AA, Ito M, Wise RSJ, Bernardi S, Frackpwiak RSJ, Heather JD, McKenzie CG, Thomas DGT and Jones T: Measurement of Regional Cerebral Blood Flow and Oxygen Utilization in Patients with Cerebral Tumours Using 15O and Positron Emission Tomography: Analytical Techniques and Preliminary Results. Neuroradiology 23:63–74, 1982.

    Article  Google Scholar 

  175. Withers HR, Peter LJ: Biological aspects of radiation therapy. In Fletcher GH (Ed.) Textbook of radiotherapy, 3rd ed. Lea & Febiger, Philadelphia, 1980, 103–179.

    Google Scholar 

  176. Kuhl DE, Markham Ch, Phelps ME, Winter J, Metter J: Local cerebral glucose metabolism in Huntington’s disease determined by emission computed tomography of 18F-fluoro-deoxy-glucose. J Nucl Med 22:15, 1981.

    Google Scholar 

  177. Kuhl DE, Phelps ME, Markham CH, Metter EJ, Riege, WH, Winter J: Cerebral Metabolism and Atrophy in Huntington’s Disease Determined by 18FDG and Computed Tomographic Scan. Ann Neurol 12:425–434, 1982.

    Article  Google Scholar 

  178. Albert ML: Subcortical dementia. In Katzman R, Terry RD, Bick KL (Eds.) Alzheimer’s Disease: Senile Dementia and Related Disorders (Aging Vol 7). New York, Raven, 1978, 173–180.

    Google Scholar 

  179. Spokes EGS: Neurochemical alterations in Huntington’s chorea. A study of post-mortem brain tissue. Brain 103:179–210, 1980.

    Article  Google Scholar 

  180. Bowen DM, Smith CB, White P, Davison AN: Neurotransmitter related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99:459–496, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reivich, M., Alavi, A. (1983). Pharmacokinetic Models and Positron Emission Tomography: Studies of Physiologic and Pathophysiologic Conditions. In: Lambrecht, R.M., Rescigno, A. (eds) Tracer Kinetics and Physiologic Modeling. Lecture Notes in Biomathematics, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50036-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-50036-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12300-2

  • Online ISBN: 978-3-642-50036-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics