Skip to main content

On Invariants, Canonical Forms and Moduli for Linear, Constant, Finite Dimensional, Dynamical Systems

  • Conference paper

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 131))

Abstract

A linear, constant, finite dimensional dynamical system is thought of as being represented by a triple of matrices (F,G,H), where F is an n × n matrix, G an n × m matrix, and H an p × n matrix; i.e. there are m inputs, p outputs and the state space dimension is n. The dynamical system itself is

$$ \mathop {\text{x}}\limits^. = {\text{Fx}}\;{\text{ + }}\;{\text{Gu,}}\;{\text{y}}\;{\text{ = }}\;{\text{Hx}} $$
((1.1))

or, if one prefers discrete time systems

$$ {{\text{x}}_{{\text{t}} + 1}} = {\text{F}}{{\text{x}}_{\text{t}}}\;{\text{ + }}\;{\text{G}}{{\text{u}}_{\text{t}}}{\text{,}}\;{{\text{y}}_{\text{t}}}\;{\text{ = }}\;{\text{H}}{{\text{x}}_{\text{t}}} $$
((1.2))

A change of coordinates in state space changes the triple of matrices (F,G,H) into the triple (SFS-1, SG, HS-1). Let DS denote the space of all triples (F,G,H); i.e. DS is affine space of dimension np + n2 + nm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Grothendieck, J. Dieudonné. Eléments de la géométrie algébrique. Ch. I, II,..., Publ. Math. I.H.E.S. 4, 8, ..., 1960, 1961,...

    Google Scholar 

  2. M. Hazewinkel, R.E. Kaiman. Moduli and Canonical Forms for Linear Dynamical Systems. Report 7504, Econometric Inst., Erasmus University of Rotterdam, 1975.

    Google Scholar 

  3. D. Husemoller. Theory of Fibre Bundles. McGraw-Hill, 1966

    Google Scholar 

  4. S. Kleiman, D. Laksov. “Schubert Calculus”. American Math. Monthly 79, 1972, 1061–1082.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Mumford. Geometric Invariant Theory. Springer 1965.

    MATH  Google Scholar 

  6. D. Mumford, K. Suominen. Introduction to the Theory of Moduli. In: F. Oort (ed). Algebraic Geometry. Proceedings of the Fifth Nordic Summer School in Mathematics. Noordhoff, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Hazewinkel, M., Kalman, R.E. (1976). On Invariants, Canonical Forms and Moduli for Linear, Constant, Finite Dimensional, Dynamical Systems. In: Marchesini, G., Mitter, S.K. (eds) Mathematical Systems Theory. Lecture Notes in Economics and Mathematical Systems, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48895-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48895-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07798-5

  • Online ISBN: 978-3-642-48895-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics