Skip to main content

Chemical Conditions for the Precipitation of Banded Iron-Formations

  • Conference paper
Biogeochemistry of Ancient and Modern Environments

Abstract

Of all the geological sources of evidence that have been quoted as to the composition of the atmosphere and surface waters in the Archaean and early Proterozoic, banded iron-formations (BIF) deserve special attention. Not only to they occur in vast quantities and widely distributed on the continents, not only are they virtually restricted to rocks older than about 2 Gyr, but they are chemical sediments that exhibit extraordinary lateral continuity in individual bands, and also sudden changes in composition from one band to another that must ultimately depend on simultaneous changes in the composition of the water from which they formed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Airey, P.L. and Dainton, F.S., 1966. The photochemistry of aqueous solutions of Fe(II). I. Photoelectron detachment from ferrous and ferrocyanide ions. Proc. R. Soc. London, A291: 340–352.

    Google Scholar 

  • Becker, R.H. and Clayton, R.N., 1972. Carbon isotopic evidence for the origin of a banded iron-formation in Western Australia. Geochim. Cosmochim. Acta, 36: 577–595.

    Article  Google Scholar 

  • Broecker, W.S., 1971. A kinetic model for the chemical composition of sea water. Quatern. Res., 1: 188–207.

    Article  Google Scholar 

  • Cairns-Smith, A.G., 1978. Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature, 276: 807–808.

    Article  Google Scholar 

  • Cloud, P., 1973. Paleoecological significances of banded iron-formation. Econ. Geol., 68: 1135–1143.

    Article  Google Scholar 

  • Eugster, H.P. and Chou, I-Ming, 1973. The depositional environments of Precambrian banded iron-formations. Econ. Geol., 68: 1144–1168.

    Article  Google Scholar 

  • Frost, B.R., 1978. Some aspects of the sedimentary and diagenetic environment of Proterozoic banded iron-formations - A discussion. Econ. Geol., 73, 1369–1371.

    Article  Google Scholar 

  • Harder, H., 1964. Können Eisensäuerlinge die Genese der Lahn-Dill-Erze erklären? Beitr. Miner. Petrogr., 9: 379–422.

    Article  Google Scholar 

  • Harder, H. and Flehmig, W., 1970. Quarzsynthese bei tiefen Temperaturen. Geochim. Cosmochim. Acta, 34: 295–305.

    Article  Google Scholar 

  • Holland, H.D., 1973. The oceans: A possible source of iron in iron-formations. Econ. Geol., 68: 1169–1172.

    Article  Google Scholar 

  • Jortner, J. and Stein, G., 1962. The photochemical evolution of hydrogen from aqueous solutions of ferrous ions. J. Phys. Chem., 66: 1258–1271.

    Article  Google Scholar 

  • Klein, C. and Bricker, O.P., 1977. Some aspects of the sedimentary and diagenetic environment of Proterozoic banded iron-formations. Econ. Geol., 72: 1457–1470.

    Article  Google Scholar 

  • La Berge, G.L., 1966. Altered pyroclastic rocks in iron formation in the Hamersley Range Western Australia. Econ. Geol., 61: 147–161.

    Article  Google Scholar 

  • Langmuir, D., 1969. The Gibbs free energies of substances in the system Fe-02-H20–0O2 at 25°C. U.S. Geol. Surv. Prof. Paper, 650-B: 180–184.

    Google Scholar 

  • Mel’nik, IU.P., 1973. Physiochemical Conditions of Formation of the Precambrian Ferruginous Quartzites. Kiev Akad. Nauk Ukrainskoi SSR Institut geokhimii i fiziki mineralov (Izdatel’stvo “Naukova Dumka”), 272 pp (in Russian).

    Google Scholar 

  • Trendall, A.F., 1965. Progress report on the Brockman Iron Formation in the WittenoomYampire area. Geol. Surv. West. Aust. Ann. Rep., 1964: 55–65.

    Google Scholar 

  • Trendall, A.F., 1972. Revolution in earth history. J. Geol. Soc. Aust., 19: 287–311.

    Article  Google Scholar 

  • Trendall, A.F. and Blockley, J.G., 1970. The Iron Formations of the Precambrian Hamersley Group, Western Australia. Bull. Geol. Surv. West. Aust., 119, 366 pp.

    Google Scholar 

  • Trendall, A.F. and Pepper, R.S., 1977. Chemical Composition of the Brockman Iron Formation. Geol. Surv. West. Aust. Rec. No. 1976/25.

    Google Scholar 

  • Wagman, D.D., Evans, W.H., Parker, V.B., Halow, I., Bailey, S.M. and Schur, R.H., 1969. Selected Values of Chemical Thermodynamic Properties. U.S. Nat. Bur. Stand. Tech. Note 270–4, 152 pp.

    Google Scholar 

  • Zelenov, K.K., 1958. Leaching and transportation of dissolved iron by thermal waters of Ebeko volcano. Dokl. Akad. Nauk SSSR, 120: 1089–1092 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Australian Academy of Science

About this paper

Cite this paper

Ewers, W.E. (1980). Chemical Conditions for the Precipitation of Banded Iron-Formations. In: Trudinger, P.A., Walter, M.R., Ralph, B.J. (eds) Biogeochemistry of Ancient and Modern Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-48739-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-48739-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-48741-5

  • Online ISBN: 978-3-642-48739-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics