Skip to main content

The Spectra of Single Reactants in Homogeneous Turbulence

  • Conference paper
Frontiers in Fluid Mechanics

Abstract

A closure is proposed which is appropriate for a numerical study of the spectrum of a single, chemically-reactive species in turbulence. The objective is to predict the effect of moderate rate reaction kinetics on scalar spectra in situations in which the fluid density is not significantly affected by the reaction. The method of approach is to use the Fourier transform of the two-point scalar probability density function as the primary independent variable whose evolution from an initial state is computed. Two closure approximations are needed, one for turbulent transport and one for molecular diffusion. We propose an EDONM-style spectral closure to represent the former and a cluster expansion closure due to Lundgren for the latter. These two closures are combined to preserve almost all realizability constraints of the system except the coincidence property of two-point density functions. Preliminary calculations have been made in the no-reaction limit to reproduce previous spectral results. Computations of linear reaction kinetic spectra are under way with the expectation that the results can be compared with previous flux cascade spectral predictions. More general reaction kinetic situations will also be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Corrsin, Phys. Fluids, 1, 42 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. S. Corrsin, J. Aeronaut. Sci., 18, 417–423 (1951)

    MathSciNet  MATH  Google Scholar 

  3. S. Corrsin, J. Appl. Phys., 22, 469–473 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. A. N. Obukhoff, Izvest. Akad Nauk. S.S.R. Ser. Geograf. Geofiz, 13, 58 (1949).

    Google Scholar 

  5. S. Corrsin, J. Fluid Mech., 11, 407 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Y.H. Pao., AIAA. J., 2, 1550 (1964)

    Article  MathSciNet  Google Scholar 

  7. E. E. O’Brien, Phys. Fluids, 9, 215 (1966)

    Article  ADS  Google Scholar 

  8. J. Lee., Phys. Fluids, 9, 363 (1966)

    Article  ADS  MATH  Google Scholar 

  9. R. H. Kraichnan, Phys. Rev., 109, 1407 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  10. C. H. Lin and E. E. O’Brien, Astronautica Acta, 17, 771 (1972)

    Google Scholar 

  11. C. Dopazo, Ph.D. Thesis, State University of New York at Stony Brook, Stony Brook, N.Y. (1973)

    Google Scholar 

  12. E. E. O’Brien, in Turbulent Reacting Flows, Eds. P. A. Libby and F. A. Williams, Vol. 44, Topics in Applied Physics, Springer-Verlag, Berlin, 1980

    Google Scholar 

  13. S. B. Pope, Phil. Trans., R. Soc, London, A291, 529 (1979)

    MathSciNet  ADS  Google Scholar 

  14. R. E. Breidenthal, Ph.D. Dissertation, Cal. Inst. Tech., Pasadena, California (1978).

    Google Scholar 

  15. A. R. Karagozian and F. E. Marble, Western States Combustion Institute Meeting Paper 83–31 (1983)

    Google Scholar 

  16. R. J. Cantwell, Annual Review of Fluid Mechanics, 13, 457 (1981)

    Article  ADS  Google Scholar 

  17. R. W. Bilger in Turbulent Reacting Flows, Eds. P. A. Libby and F. A. Williams, 65, Springer-Verlag (1980)

    Google Scholar 

  18. K. N. C. Bray in Turbulent Reacting Flows, Eds. P. A. Libby and F. A. Williams, 115, Springer-Verlag (1980)

    Google Scholar 

  19. T. S. Lundgren, Phys. Fluids, 24, 584 (1981)

    Google Scholar 

  20. S. B. Pope, Phys. Fluids, 24, 584 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  21. S. A. Orszag, Statistical Theory of Turbulence in Proc, Les Houches Summer School, eds. R. Balean and J. L. Peake, 237, Gordon and Breach (1973)

    Google Scholar 

  22. R. H. Kraichnan, J. Fluid Mech., 47, 513 (1971)

    Article  ADS  MATH  Google Scholar 

  23. R. H. Kraichnan, J. Fluid Mech., 5, 497 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. R. H. Kraichnan, Phys. Fluids, 9, 1937 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  25. J. R. Herring, D. Schertzer, M. Lesicur, G. R. Newman, J. P. Chollet and M. Larchevegue, J. Fluid Mech., 124, 411 (1982)

    Article  ADS  MATH  Google Scholar 

  26. Y. Y. Kuo and E. E. O’Brien, Phys. Fluids, 24, 194 (1981)

    Article  ADS  MATH  Google Scholar 

  27. V. M. Ievlev, Dokl. Akad. Nauk. S.S.S.R., 208, 104 (1973) [Sov. Phys.--Dokl., 18, 117 (1973)]

    Google Scholar 

  28. T. S. Lundgren in Statistical Models and Turbulence, Eds. H. Rosenblatt and C. van Atta, 70, Springer-Verlag, Berlin (1972)

    Chapter  Google Scholar 

  29. E. O’Brien, CEAS Report #276, SUNY at Stony Brook, N.Y. (1977)

    Google Scholar 

  30. Y. Y. Kuo, Ph.D. Thesis, State University of New York, Stony Brook, N.Y. (1977)

    Google Scholar 

  31. E. O’Brien and C. F. Francis, J. Fluid Mech., 13, 309 (1962)

    MathSciNet  Google Scholar 

  32. R. W. Bilger, Combustion Science and Technology, 13, 89 (1979)

    Article  Google Scholar 

  33. N. N. Yanenko, The Method of Fractional Steps, Springer-Verlag, New York (1971)

    Book  MATH  Google Scholar 

  34. J. R. Herring, et al., J. Fluid Mech., 124, 411 (1982)

    Article  ADS  MATH  Google Scholar 

  35. C. E. Leith, J. Atmos. Sciences., 28, 145 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

O’Brien, E.E. (1985). The Spectra of Single Reactants in Homogeneous Turbulence. In: Davis, S.H., Lumley, J.L. (eds) Frontiers in Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46543-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46543-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46545-1

  • Online ISBN: 978-3-642-46543-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics