Skip to main content

Abstract

Although we don’t see how the recent data on multiple drug resistance is related to the mechanism of action of the penicillin-cephalosporin drugs, we feel that certain aspects of resistance development should be noted at this time. Ochiai et al. (1959) and Akiba (1959) independently reported the hereditary character of multiple drug resistance in strains of Enterobacteriaceae. The medical importance of the extrachromosomal episomal infective drug resistance transfer factors has only recently been emphasized (Walton, 1966; Kabins and Cohen, 1966). Penicillinase synthesis has been adequately demonstrated to be mediated via R-factor episomes in E. coli by Datta and Richmond (1966). How these infective transfer factors (R-factors) relate to the plasmids described in staphylococci is not clear but there are similarities in the conceptual status of these factors (Poston, 1966; Asheshov, 1966). The character of infectious drug resistance transfer in complex environments and during chemotherapeutic regimens between various bacterial species and their morphological variants appears to be a most vital area for intensive future research. For further consideration of these “current events” we refer the reader to Petrovskaya et al. (1964), Anderson (1965), Anderson and Lewis (1965), and De Courcy and Sevag (1966).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Akiba, T.: Mechanism of development of resistance in Shigella. Medicine of Japan in 1959. [In Japanese.] Proc. 15th Gen. Meeting of the Japan Med. Assoc. 5, 299 (1959).

    Google Scholar 

  • Anderson, E. S.: Origin of transferable drug-resistance factors in the Enterobacteriaceae. Brit. Med. J. 1965 II, 1289.

    Article  Google Scholar 

  • Anderson, E. S., and M. J. Lewis: Drug resistance and its transfer in S. typhimurium. Nature 206, 579 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Asheshov, E. H.: Chromosomal location of the genetic elements controlling penicillinase production in a strain of S. aureus. Nature 210, 804 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Datta, N., and M. H. Richmond: The purification and properties of a penicillinase whose synthesis is mediated by an R-factor in Escherichia coli. Biochem. J. 98, 204 (1966).

    PubMed  CAS  Google Scholar 

  • De Courcy, S. J., and M. G. Sevag: Specificity and prevention of antibiotic resistance in 5. aureus. Nature 209, 373 (1966).

    Google Scholar 

  • Hugo, W. B., and R. J. Stretton: The role of cellular lipid in the resistance of grampositive bacteria to penicillins. J. Gen. Microbiol. 42, 133 (1966).

    PubMed  CAS  Google Scholar 

  • Kabins, S. A., and S. Cohen: Resistance-transfer factor in Enterobacteriaceae. New Engl. J. Med. 275, 248 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Ochiai, K., T. Yamanaka, K. Kimura, and O. Sawada: Studies on inheritance of drug resistance between Shigella strains and Escherichia coli strains. [In Japanese.] Nippon Iji Shimpo 1861, 34 (1959).

    Google Scholar 

  • Petrovskaya, V. G., V. S. Levashev, and H. V. Davydova: LOSS of the ability to transmit the colicinogenic factor I by penicillin spheroplasts and L-forms. [In Russian.] Zhur. Mikrobiol. Epidemiol. Immunol. (3) MArch. 22 (1966).

    Google Scholar 

  • Poston, S. M.: Cellular location of the genes controlling penicillinase production and resistance to streptomycin and tetracycline in a strain of S. aureus. Nature 210, 802 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Rolinson, G. N.: Antibacterial activity of penicillin. I. The nature of the activity of different acyl derivatives of 6-aminopenicillanic acid. Proc. Roy. Soc. (London), Ser. XIII 163, 417 (1965).

    Article  CAS  Google Scholar 

  • Tipper, D. J., and J. L. Strominger: Isolation of 4-O-β-N-acetylmuramyl-N-acetyl-glucosamine and 4-0-β-N, 6-0-diacetylmuramyl-N-acetylglucosamine and the structure of the cell wall polysaccharide of Staphylococcus aureus. Biochem. Biophys. Res. Commun. 22, 48 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Walton, J. R.: In vivo transfer of infectious drug resistance. Nature 211, 312 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Borsos, T., R. R. Dourmashkin, and J. H. Humphrey: Lesions in erythrocyte membranes caused by immune hemolysis. Nature 202, 251 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Fujino, T., T. Kamiki, Y. Akita, and M. Akagi: Morphological studies on the mode of action of nystatin on Candida albicans. Biken J. 5, 233 (1962).

    CAS  Google Scholar 

  • Kinsky, S. C., S. A. Luse, and L. L. M. Van Deenen: Interaction of polyene antibiotics with natural and artificial membrane systems. In: Symposium on Lipid-Protein Interactions. Federation Proc. 25, 1503 (1966).

    CAS  Google Scholar 

  • Lichtenstein, N. S., and A. Leaf: Effect of amphotericin B on permeability of the toad bladder. J. Clin. Invest. 8, 1328 (1965).

    Article  Google Scholar 

  • Schlösser, E., and D. Gottlieb: Sterols and the sensitivity of Pythium species to filipin. J. Bacteriol. 91, 1080 (1966a).

    PubMed  Google Scholar 

  • Schlösser, E., and D. Gottlieb: Mode of hemolytic action of antifungal polyene antibiotic filipin. Z. Naturforsch. 21b, 74 (1966b).

    Google Scholar 

  • Sessa, G.: Effect of polyene antibiotics on artificial liposomes. Federation Proc. 25, 358 (1966).

    Google Scholar 

  • Stanley, V. C., and M. P. English: Some effects of nystatin on the growth of four Aspergillus species. J. Gen. Microbiol. 40, 107 (1965).

    PubMed  CAS  Google Scholar 

  • Weissmann, G., R. Hirschhorn, M. Pras, and V. Bevans: Effect of polyene antibiotics on lysosomes. Federation Proc. 25, 358 (1966).

    Google Scholar 

  • Zutphen, H. VAN, L. L. M. VAN Deenen, and S. C. Kinsky: The action of polyene antibiotics on bilayer lipid membranes. Biochem. Biophys. Res. Commun. 22 (1966).

    Google Scholar 

  • Ito, M., T. Aida, and Y. Ko Yam A: Studies on the bacterial formation of a peptide antibiotic, Colistin. I. On the enzymatic inactivation of Colistin by Bacillus colistinus. Agr. Biol. Chem. 30, 1112 (1966).

    Article  CAS  Google Scholar 

  • Anderson, L. A., and R. M. Smillie: Binding of chloramphenicol by ribosomes from chloroplasts. Biochem. Biophys. Res. Commun. 23, 535 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Weber, M. J., and J. A. DE Moss: The inhibition by chloramphenicol of nascent protein formation in E. coli. Proc. Natl. Acad. Sci. U.S. 55, 1223 (1966).

    Article  Google Scholar 

  • Coutsogeorgopoulos, C.: On the mechanism of action of chloramphenicol in protein synthesis. Biochim. et Biophys. Acta 129, 214 (1966).

    CAS  Google Scholar 

  • Carter, W., and K. S. Mccarty: Molecular mechanisms of antibiotic action. Ann. Internal Med. 64, 1087 (1966).

    CAS  Google Scholar 

  • Day, L. E.: Tetracycline inhibition of cell-free protein synthesis. I. Binding of tetracycline to components of the system. J. Bacteriol. 91, 1917 (1966a).

    PubMed  CAS  Google Scholar 

  • Day, L. E.: Tetracycline inhibition of cell-free protein synthesis. II. Effect of the binding of tetracycline to the components of the system. J. Bacteriol. 92, 197 (1966b).

    PubMed  CAS  Google Scholar 

  • Franklin, T. J.: Mode of action of the tetracyclines. Biochemical studies of antimicrobial drugs (B. A. NEWTON and P. E. Reynolds, eds.). Sixteenth Symposium, Soc. Gen. Microbiol. Cambridge: Cambridge University Press 1966, p. 192.

    Google Scholar 

  • Fuwa, I., and J. Okuda: Inhibitory action of tetracyclines of polynucleotide Phosphorylase. J. Biochem. 59, 95 (1966) [Japan.].

    PubMed  CAS  Google Scholar 

  • Garrett, E. R., G. H. Miller, and M. R. W. Brown: Kinetics and mechanisms of action of antibiotics on microorganisms. V. Chloramphenicol and tetracycline affected Escherichia coli generation rates. J. Pharm. Sci. 55, 593 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Holmes, I.A., and D. G. Wild: Consequences of inhibition of Escherichia coli by tetracycline antibiotics. Nature 210, 1047 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Izaki, K., K. KiucHi, and K. Arima: Specificity and mechanism of tetracycline resistance in a multiple drug resistant strain of Escherichia coli. J. Bacteriol. 91, 628 (1966).

    PubMed  CAS  Google Scholar 

  • Mikolajcik, E. M.: Antibiotic influence on arginine desimidase activity by Streptococcus lactis. J. Dairy Sci. 48, 1445 (1966).

    Article  Google Scholar 

  • Nikolov, T. K., B. D. STANTCHEV et S. I. Boyadjiev: Influence des antibiotiques sur la formation des anticorps in vitro. I. Etude comparee de l’influence inhibitrice des tétracyclines et du chloamphénicol. Ann. inst. Pasteur 110, Suppl. 3, 181 (1966).

    Google Scholar 

  • Suzuka, I., H. Kaji, and A. Kaji: Binding of specific SRNA to 30S ribosomal subunits: Effect of 50S ribosomal subunits. Proc. Natl. Acad. Sci. U.S. 55, 1483 (1966).

    Article  CAS  Google Scholar 

  • Yeh, S.D. J., and M. E. Shils: Tetracycline and incorporation amino acids into proteins of rat tissues. Proc. Exptl. Biol. Med. 121, 729 (1966).

    CAS  Google Scholar 

  • Ebringer, L.: Macrolide antibiotics as bleaching factors for Euglena gracilis. Naturwissenschaften 52, 666 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Vazquez, D.: Inhibitors of protein synthesis at the ribosome level. Studies on their site of action. Biochem. Biophys. Res. Commun, (submitted) (1966).

    Google Scholar 

  • Vazquez, D., and R. E. Monro: Effects of some inhibitors of protein synthesis on the binding of aminoacyl-s-RNA to ribosomes. Science (submitted) (1966).

    Google Scholar 

  • Goldberg, I. H., and K. Mitsugi; Sparsomycin inhibition of polypeptide synthesis promoted by synthetic and natural polynucleotides. Biochemistry 6, 372 (1967a).

    CAS  Google Scholar 

  • Goldberg, I. H., and K. Mitsugi: Inhibition by sparsomycin and other antibiotics of the puromycin induced relase of polypeptide from ribosomes. Biochemistry 6, 383 (1967b).

    Article  PubMed  CAS  Google Scholar 

  • Mürer, E. H.: Role of energy metabolism of platelets in clot retraction. Information Exchange Group No. 2, Scientific Memo No. 123 (1966).

    Google Scholar 

  • Reporter, M.: Interaction of antimycin A with biological systems. Biochemistry 5, 2416 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Rieske, J. S., S. Lipton, and H. Baum: In preparation

    Google Scholar 

  • Rieske, J. S., C. D. Stoner, and H. Baum: In preparation.

    Google Scholar 

  • Höfer, M., and B. C. Pressman: Stimulation of oxidative phosphorylation in mitochondria by potassium in the presence of valinomycin. Biochemistry 5, 3919 (1966).

    Article  Google Scholar 

  • Graven, S. N., H. A. Lardy, and S. ESTRADA-O.: Antibiotics as tools for metabolic studies. VIII. Effect of nonactin homologs on alkali metal cation transport and rate of respiration in mitochondria. Biochemistry 6, 365 (1967).

    CAS  Google Scholar 

  • Smith, D.H., and B. D. Davis: Mode of action of novobiocin in Escherichia coli. J. Bacteriol. 93, 71 (1967).

    PubMed  CAS  Google Scholar 

  • Smith, D. H., and B. D. Davis: Inhibition on nucleic acid synthesis by novobiocin. Biochem. Res. Commun. 18, 796 (1965).

    Article  CAS  Google Scholar 

  • Davies, J., L. Gorini, and B. D. Davis: Misreading of RNA code words induced by aminoglycoside antibiotics. Mol. Pharmacol. 1, 93 (1965).

    PubMed  CAS  Google Scholar 

  • Beppu, T., and K. Arima: Protection of Escherichia coli from lethal effect of colicin by high osmotic pressure. J. Bacteriol. 93, 80 (1967).

    PubMed  CAS  Google Scholar 

  • Gauze, G.G., V. Dudnik, N.B. Loshgareva, and I. B. Zbarsky: Inhibition of RNA synthesis by antibiotic 6270 from Echinomycin group in bacterial and tissue cells. Antibiotics [Russian] 11, 423 (1966).

    CAS  Google Scholar 

  • Bloch, T. D., and C. Coutsogeorgopoulos: Inhibition of protein synthesis by amicetin, a nucleoside antibiotic. Biochem. 5, 3345 (1966).

    Article  CAS  Google Scholar 

  • Brock, T. D.: Effect of antibiotics and inhibitors on M protein synthesis. J. Bacteriol. 85, 527 (1963).

    PubMed  CAS  Google Scholar 

  • Dudnik, Y. V.: Induction of lysogenic Micrococcus lysodecticus by antibiotics with the ability to affect DNA synthesis. Antibiotiki 10, 112 (1965).

    PubMed  CAS  Google Scholar 

  • Dudnik, Y. V., and G. G. Gause: Studies of the mechanism of action of bruneomycin. Antibiotiki 10, 880 (1965).

    PubMed  CAS  Google Scholar 

  • Gause, G. F.: Aspects of antibiotic research. Chem. & Ind. (London) 1966, 1506.

    Google Scholar 

  • Lynch, J. P., and H. D. Sisler: Mechanism of action of phytoactin in Saccharomyces pastorianus. Phytopathology 57, 367 (1967).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Flynn, E.H. et al. (1967). Addenda. In: Gottlieb, D., Shaw, P.D. (eds) Mechanism of Action. Antibiotics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46051-7_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46051-7_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46053-1

  • Online ISBN: 978-3-642-46051-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics