Skip to main content

Fixation of Carbon Dioxide Using Molecular Reactions on Flexible Substrates

  • Chapter
  • First Online:
Transformation and Utilization of Carbon Dioxide

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

This chapter explores the possibilities of using flexible substrates as basis for carbon dioxide fixation or photocatalytic reduction. Flexible substrates facilitate the processing of the large active areas necessary for targeting the increased atmospheric content of carbon dioxide, and various coating methods and reactor designs from laboratory to industrial scale are presented; also the future challenges are discussed. In designing reactors, we describe how in situ infrared spectroscopy can be utilized as a simple analysis tool. A key challenge in these conversion systems is the necessary precautions that must be taken when evaluating the product outcome. Verifying actual conversion is most convincingly done by using isotopically labeled carbon dioxide, as several groups have found that using isotopically labeled CO2 leads to a product composition of species containing both 13C and 12C. This makes it likely that carbonates or other carbonaceous residues that reside on the chamber or catalyst surface somehow contribute to the products. The photochemistry of commonly used flexible substrate is reviewed, as the photochemical stability of these needs to be enhanced in order for this approach to be viable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3:43–81

    Article  CAS  Google Scholar 

  2. Martin LR (1980) Use of solar energy to reduce carbon dioxide. Sol Energy 24:271–277

    Article  CAS  Google Scholar 

  3. Traynor AJ, Jensen RJ (2002) Direct solar reduction of CO2 to fuel: first prototype results. Ind Eng Chem Res 41:1935–1939

    Article  CAS  Google Scholar 

  4. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177

    Article  CAS  Google Scholar 

  5. Varghese OK, Grimes CA (2008) Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: a review with examples using titania nanotube array photoanodes. Sol Energy Mater Sol Cells 92:374–384

    Article  CAS  Google Scholar 

  6. Lo C, Hung C, Yuan C, Wu J (2007) Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Sol Energy Mater Sol Cells 91:1765–1774

    Article  CAS  Google Scholar 

  7. Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4:1259–1278

    Article  CAS  Google Scholar 

  8. Nguyen T, Wu JCS (2008) Photoreduction of CO2 to fuels under sunlight using optical-fiber reactor. Sol Energy Mater Sol Cells 92:864–872

    Article  CAS  Google Scholar 

  9. Linsebigler AL, Lu GQ, Yates JT (1995) Photocatalysis on TiO2 surfaces – principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  10. Jensen J, Mikkelsen M, Krebs FC (2011) Flexible substrates as basis for photocatalytic reduction of carbon dioxide. Sol Energy Mater Sol Cells 95:2949–2958

    Article  CAS  Google Scholar 

  11. Deng L, Hägg M (2010) Swelling behavior and gas permeation performance of PVAm/PVA blend FSC membrane. J Membr Sci 363:295–301

    Article  CAS  Google Scholar 

  12. Nishimura A, Komatsu N, Mitsui G, Hirota M, Hu E (2009) CO2 reforming into fuel using TiO2 photocatalyst and gas separation membrane. Catal Today 148:341–349

    Article  CAS  Google Scholar 

  13. Derichter RK, Ming T, Caillol S (2013) Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors. Renew Sustain Energy Rev 19:82–106

    Article  CAS  Google Scholar 

  14. Jin C, Christensen PA, Egerton TA, Lawson EJ, White JR (2006) Rapid measurement of polymer photo-degradation by FTIR spectrometry of evolved carbon dioxide. Polym Degrad Stab 91:1086–1096

    Article  CAS  Google Scholar 

  15. Robinson AJ, Searle JR, Worsley DA (2004) Novel flat panel reactor for monitoring photodegradation. Mater Sci Technol 20:1041–1048

    Article  CAS  Google Scholar 

  16. Hong J, Zhang W, Ren J, Xu R (2013) Photocatalytic reduction of CO2: a brief review on product analysis and systematic methods. Anal Methods 5:1086–1097

    Article  CAS  Google Scholar 

  17. Su W, Fu X, Wei K, Zhang H, Lin H, Wang X, Li D (2001) Spectrum studies on titania photocatalysts. Guang Pu Xue Yu Guang Pu Fen Xi 21:34

    Google Scholar 

  18. Ulagappan N, Frei H (2000) Mechanistic study of CO2 photoreduction in Ti silicalite molecular sieve by FT-IR spectroscopy. J Phys Chem A 104:7834–7839

    Article  CAS  Google Scholar 

  19. Fredin L, Nelander B, Ribbegård G (1974) On the dimerization of carbon dioxide in nitrogen and argon matrices. J Mol Spectrosc 53:410–416

    Article  CAS  Google Scholar 

  20. Mascetti J, Tranquille M (1988) Fourier transform infrared studies of atomic Ti, V, Cr, Fe, Co, Ni, and Cu reactions with carbon dioxide in low-temperature matrices. J Phys Chem 92:2177–2184

    Article  CAS  Google Scholar 

  21. Burch DE, Williams D (1962) Total absorptance of carbon monoxide and methane in the infrared. Appl Optics 1:587–594

    Article  CAS  Google Scholar 

  22. Falk M, Whalley E (1961) Infrared spectra of methanol and deuterated methanols in gas, liquid, and solid phases. J Chem Phys 34:1554–1568

    Article  CAS  Google Scholar 

  23. Nelander B (1980) Infrared spectrum of the water formaldehyde complex in solid argon and solid nitrogen. J Chem Phys 72:77–84

    Article  CAS  Google Scholar 

  24. Stein SE (2013) In: Linstrom J, Mallard WG (eds) NIST chemistry WebBook, NIST standard reference database 69. NIST, Gaithersburg, 20899

    Google Scholar 

  25. Yang C, Yu Y, Van Der Linden B, Wu JCS, Mul G (2010) Artificial photosynthesis over crystalline TiO2-based catalysts: fact or fiction? J Am Chem Soc 132:8398–8406

    Article  CAS  Google Scholar 

  26. Lin W, Han H, Frei H (2004) CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41 silicate sieve. J Phys Chem B 108:18269–18273

    Article  CAS  Google Scholar 

  27. Kobayashi KLI, Shiraki Y, Katayama Y (1978) Study of adsorption phenomena on aluminium by interatomic Auger transition spectroscopy. I. Initial oxidation of Al. Surf Sci 77:449–457

    Article  CAS  Google Scholar 

  28. Parkyns ND (1967) Surface properties of metal oxides. Part I. Infrared studies of the adsorption and oxidation of carbon monoxide on alumina. J Chem Soc A Inorg Phys Theor Chem:1910–1913. doi:10.1039/J19670001910

  29. Mao C, Vannice MAS (1994) High surface area a-alumina. I. Adsorption properties and heats of adsorption of carbon monoxide, carbon dioxide, and ethylene. Appl Catal A Gen 111:151–173

    Article  CAS  Google Scholar 

  30. Shiraki Y, Kobayashi KLI, Katayama Y (1978) Study of adsorption phenomena on aluminium by interatomic Auger transition spectroscopy. II. CO adsorption onto Al. Surf Sci 77:458–464

    Article  CAS  Google Scholar 

  31. Chen C, Ahn W (2011) CO2 capture using mesoporous alumina prepared by a sol-gel process. Chem Eng J 166:646–651

    Article  CAS  Google Scholar 

  32. Morterra C, Magnacca G (1996) A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species. Catal Today 27:497–532

    Article  CAS  Google Scholar 

  33. Zhou Z, Zeng T, Cheng Z, Yuan W (2011) Preparation and characterization of titania-alumina mixed oxides with hierarchically macro-/mesoporous structures. Ind Eng Chem Res 50:883–890

    Article  CAS  Google Scholar 

  34. Norrman K, Ghanbari-Siahkali A, Larsen NB (2005) Studies of spin-coated polymer films. Annu Rep Progr Chem Sect C 101:174–201

    Article  CAS  Google Scholar 

  35. Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93:394–412

    Article  CAS  Google Scholar 

  36. Dam HF, Krebs FC (2012) Simple roll coater with variable coating and temperature control for printed polymer solar cells. Sol Energy Mater Sol Cells 97:191–196

    Article  CAS  Google Scholar 

  37. Cozzoli PD, Kornowski A, Weller H (2003) Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J Am Chem Soc 125:14539–14548

    Article  CAS  Google Scholar 

  38. Willis AL, Turro NJ, O’Brien S (2005) Spectroscopic characterization of the surface of iron oxide nanocrystals. Chem Mater 17:5970–5975

    Article  CAS  Google Scholar 

  39. Satapathy S, Gupta PK, Srivastava H, Srivastava AK, Wadhawan VK, Varma KBR, Sathe VG (2007) Effect of capping ligands on the synthesis and on the physical properties of the nanoparticles of LiTaO3. J Cryst Growth 307:185–191

    Article  CAS  Google Scholar 

  40. Liu GQ, Jin ZG, Liu XX, Wang T, Liu ZF (2007) Anatase TiO2 porous thin films prepared by sol-gel method using CTAB surfactant. J Sol Gel Sci Technol 41:49–55

    Article  CAS  Google Scholar 

  41. Kehres J, Andreasen JW, Krebs FC, Molenbroek AM, Chorkendorff I, Vegge T (2010) Combined in situ small- and wide-angle X-ray scattering studies of TiO2 nanoparticle annealing to 1023K. J Appl Crystallogr 43:1400

    Article  CAS  Google Scholar 

  42. Huo Q, Margolese DI, Ciesla U, Feng P, Gier TE, Sieger P, Leon R, Petroff PM, Schüth F, Stucky GD (1994) Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 368:317–321

    Article  CAS  Google Scholar 

  43. Li Z, Zhu Y (2003) Study on the surface-modification of TiO2 nanoparticles. Appl Surf Sci 61:1484–1487

    Google Scholar 

  44. Shi X, Rosa R, Lazzeri A (2010) On the coating of precipitated calcium carbonate with stearic acid in aqueous medium. Langmuir 26:8474–8482

    Article  CAS  Google Scholar 

  45. Parkin IP, Palgrave RG (2005) Self-cleaning coatings. J Mater Chem 15:1689–1695

    Article  CAS  Google Scholar 

  46. Gohin M, Allain E, Chemin N, Maurin I, Gacoin T, Boilot J (2010) Sol-gel nanoparticulate mesoporous films with enhanced self-cleaning properties. J Photochem Photobiol A Chem 216:142–148

    Article  CAS  Google Scholar 

  47. Kuai Q, Ye H, Gao Y (2010) Preparation of aluminum titanium pigments and its application in self-cleaning coating. Fenmo Yejin Cailiao Kexue yu Gongcheng 15:283–287

    Google Scholar 

  48. Rathouský J, Kalousek V, Kolář M, Jirkovský J, Barták P (2011) A study into the self-cleaning surface properties – the photocatalytic decomposition of oleic acid. Catal Today 161:202–208

    Article  Google Scholar 

  49. Harwood HJ (1962) Reactions of the hydrocarbon chain of fatty acids. Chem Rev 62:99–154

    Article  CAS  Google Scholar 

  50. Kang KS, Chen Y, Yoo KH, Jyoti N, Kim J (2009) Cause of slow phase transformation of TiO2 nanorods. J Phys Chem C 113:19753–19755

    Article  Google Scholar 

  51. Hao B, Li Y, Wang S (2010) Synthesis and structural characterization of surface-modified TiO2. Adv Mater Res 129–131:154–158

    Article  Google Scholar 

  52. Pradhan AR, Wu JF, Jong SJ, Tsai TC, Liu SB (1997) An ex situ methodology for characterization of coke by TGA and 13C CP-MAS NMR spectroscopy. Appl Catal A Gen 165:489–497

    Article  CAS  Google Scholar 

  53. Roonasi P, Holmgren A (2009) A Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) study of oleate adsorbed on magnetite nano-particle surface. Appl Surf Sci 255:5891–5895

    Article  CAS  Google Scholar 

  54. Gijsman P, Meijers G, Vitarelli G (1999) Comparison of the UV-degradation chemistry of polypropylene, polyethylene, polyamide 6 and polybutylene terephthalate. Polym Degrad Stab 65:433–441

    Article  CAS  Google Scholar 

  55. Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2003) Degradation profile of polyethylene after artificial accelerated weathering. Polym Degrad Stab 79:385–397

    Article  CAS  Google Scholar 

  56. Hamid SH, Amin MB (1995) Lifetime prediction of polymers. J Appl Polym Sci 55:1385–1394

    Article  CAS  Google Scholar 

  57. Day M, Wiles DM (1972) Photochemical degradation of poly(ethylene terephthalate). II. Effect of wavelength and environment on the decomposition process. J Appl Polym Sci 16:191–202

    Article  CAS  Google Scholar 

  58. Day M, Wiles DM (1971) Photochemical decomposition mechanism of poly(ethylene terephthalate). J Pol Sci B 9:665–669

    Article  CAS  Google Scholar 

  59. Kockott D (1989) Natural and artificial weathering of polymers. Polym Degrad Stab 25:181–208

    Article  CAS  Google Scholar 

  60. Day M, Wiles DM (1972) Photochemical degradation of poly(ethylene terephthalate). III. Determination of decomposition products and reaction mechanism. J Appl Polym Sci 16:175–189

    Article  CAS  Google Scholar 

  61. Philippart J, Posada F, Gardette J (1995) Mass spectroscopy analysis of volatile photoproducts in photooxidation of polypropylene. Polym Degrad Stab 49:285–290

    Article  CAS  Google Scholar 

  62. Fernando SS, Christensen PA, Egerton TA, Eveson R, Martins-Franchetti SM, Voisin D, White JR (2009) Carbon dioxide formation during initial stages of photodegradation of poly(ethyleneterephthalate) (PET) films. Mater Sci Technol 25:549–555

    Article  CAS  Google Scholar 

  63. Grossetete T, Rivaton A, Gardette JL, Hoyle CE, Ziemer M, Fagerburg DR, Clauberg H (2000) Photochemical degradation of poly(ethylene terephthalate)-modified copolymer. Polymer 41:3541–3554

    Article  CAS  Google Scholar 

  64. Fechine GJM, Souto-Maior RM, Rabello MS (2007) Photodegradation of multilayer films based on PET copolymers. J Appl Polym Sci 104:51–57

    Article  CAS  Google Scholar 

  65. Hurley CR, Leggett GJ (2009) Quantitative investigation of the photodegradation of polyethylene terephthalate film by friction force microscopy, contact-angle goniometry, and X-ray photoelectron spectroscopy. ACS Appl Mater Interfaces 1:1688–1697

    Article  CAS  Google Scholar 

  66. Chew CH, Gan LM, Scott G (1977) Mechanism of the photo-oxidation of polyethylene. Eur Polym J 13:361–364

    Article  CAS  Google Scholar 

  67. Gijsman P, Dozeman A (1996) Comparison of the UV-degradation chemistry of unstabilized and HALS-stabilized polyethylene and polypropylene. Polym Degrad Stab 53:45–50

    Article  CAS  Google Scholar 

  68. Costa L, Luda MP, Trossarelli L (1997) Ultra high molecular weight polyethylene – II. Thermal- and photo-oxidation. Polym Degrad Stab 58:41–54

    Article  CAS  Google Scholar 

  69. Lacoste J, Deslandes Y, Black P, Carlsson DJ (1995) Surface and bulk analyses of the oxidation of polyolefins. Polym Degrad Stab 49:21–28

    Article  CAS  Google Scholar 

  70. Arnaud R, Moisan J, Lemaire J (1984) Primary hydroperoxidation in low-density polyethylene. Macromolecules 17:332–336

    Article  CAS  Google Scholar 

  71. Rivaton A (1993) Photochemistry of poly(butyleneterephthalate): 2-Identification of the IR-absorbing photooxidation products. Polym Degrad Stab 41:297–310

    Article  CAS  Google Scholar 

  72. Rivaton A (1993) Photochemistry of poly(butyleneterephthalate): 1-Identification of the IR-absorbing photolysis products. Polym Degrad Stab 41:283–296

    Article  CAS  Google Scholar 

  73. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  74. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  75. Hufschmidt D, Liu L, Selzer V, Bahnemann D (2004) Photocatalytic water treatment: fundamental knowledge required for its practical application. Water Sci Technol 49:135–140

    CAS  Google Scholar 

  76. Allen NS, Edge M, Corrales T, Catalina F (1998) Stabiliser interactions in the thermal and photooxidation of titanium dioxide pigmented polypropylene films. Polym Degrad Stab 61:139–149

    Article  CAS  Google Scholar 

  77. Fechine GJM, Rabello MS, Souto-Maior RM (2002) The effect of ultraviolet stabilizers on the photodegradation of poly(ethylene terephthalate). Polym Degrad Stab 75:153–159

    Article  CAS  Google Scholar 

  78. Allen NS, Khatami H, Thompson F (1992) Influence of titanium dioxide pigments on the thermal and photochemical oxidation of low density polyethylene film. Eur Polym J 28:817–822

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik C. Krebs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jensen, J., Krebs, F.C. (2014). Fixation of Carbon Dioxide Using Molecular Reactions on Flexible Substrates. In: Bhanage, B., Arai, M. (eds) Transformation and Utilization of Carbon Dioxide. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44988-8_8

Download citation

Publish with us

Policies and ethics