Skip to main content

Basic Theory of Quantitative Remote Sensing

  • Chapter
  • First Online:
Quantitative Remote Sensing in Thermal Infrared

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

Abstract

Digital numbers (DNs) are what we get after purchasing data from the data providers (Colwell et al. 1983; Liang 2004). DNs are the scaled integers from quantification that is not a physical quantity. Most quantization systems in remote sensing are linear having 6–12 bits. The DN can be any integer in this set:

$$ \mathrm{DN}\in \left[1,{2}^q\right] $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements (FAO Irrigation and drainage paper 56). Rome: FAO, 300, 6541.

    Google Scholar 

  • ASCE-EWRI. (2005). The ASCE standardized reference evapotranspiration equation. Technical committee report to the environmental and water resources Institute of the American Society of Civil Engineers from the Task Committee on Standardization of Reference Evapotranspiration. ASCE-EWRI, 1801 Alexander Bell Drive, Reston, VA 20191-4400, 173 pp.

    Google Scholar 

  • Becker, F., & Li, Z. L. (1995). Surface temperature and emissivity at various scales: Definition, measurement and related problems. Remote Sensing Reviews, 12(3–4), 225–253.

    Article  Google Scholar 

  • Boltzmann, L. (1884). Ableitung des Stefan’schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie. In Annalen der Physik und Chemie, Bd. 22, S. 291–294.

    Google Scholar 

  • Brutsaert, W. (1982). Evaporation into the atmosphere: Theory, history, and applications (p. 299). Dordrecht: Reidel Publishing Co.

    Book  Google Scholar 

  • Carlson, T. N., Dodd, J. K., Benjamin, S. G., & Cooper, J. N. (1981). Satellite estimation of the surface energy balance, moisture availability and thermal inertia. Journal of Applied Meteorology, 20, 67–87.

    Article  Google Scholar 

  • Chandrasekhar, S. (1960). Radiative transfer (Rev. reprint ed.). New York: Dover Publications. ISBN 978-0-486-60590-6.

    Google Scholar 

  • Colwell, R. N., Ulaby, F. T., Simonett, D. S., Estes, J. E., & Thorley, G. A. (1983). Manual of remote sensing (Theory, instruments and techniques, Vol. 1). Falls Church: American Society of Photogrammetry.

    Google Scholar 

  • Fritschen, L. J. (1965). Accuracy of evapotranspiration determinations by the Bowen ratio method. Hydrological Sciences Journal, 10(2), 38–48.

    Google Scholar 

  • Kim, C. P., & Entekhabi, D. (1997). Examination of two methods for estimating regional evaporation using a coupled mixed layer and land surface model. Water Resources Research, 33(9), 2109–2116.

    Article  Google Scholar 

  • Kirchhoff, G. (1860). Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme and Licht. Annalen der Physik und Chemie, 109, 275–301. (Translated by Guthrie, F. as Kirchhoff, G. (1860). On the relation between the radiating and absorbing powers of different bodies for light and heat. Philosophical Magazine. Series 4, 20: 1–21.)

    Google Scholar 

  • Lambert, J. H. (1760). Photometria, sive de Mensura et Gradibus Luminis, Colorum et Umbrae. Augsburg: Vidvae Eberhardi Klett.

    Google Scholar 

  • Li, Z. L., Tang, B. H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I., & Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14–37.

    Article  Google Scholar 

  • Liang, S. (2004). Quantitative remote sensing of land surfaces. Hoboken: Wiley-Interscience.

    Google Scholar 

  • Liou, K. N. (2002). An introduction to atmospheric radiation (Vol. 84). Boston: Academic Press.

    Book  Google Scholar 

  • Martonchik, J. V., Bruegge, C. J., & Strahler, A. H. (2000). A review of reflectance nomenclature used in remote sensing. Remote Sensing Reviews, 19, 9–20.

    Article  Google Scholar 

  • Monin, A. S., & Obukhov, A. (1954). Basic laws of turbulent mixing in the surface layer of the atmosphere. Trudy Geofizicheskogo Instituta, Akademiya Nauk SSSR, 24, 163–187.

    Google Scholar 

  • Moran, M. S., Jackson, R. D., Raymond, L. H., Gay, L. W., & Slater, P. N. (1989). Mapping surface energy balance components by combining Landsat Thematic Mapper and ground-based meteorological data. Remote Sensing of Environment, 30(1), 77–87.

    Article  Google Scholar 

  • Nicodemus, F. E. (1965). Directional reflectance and emissivity of an opaque surface. Applied Optics, 4(7), 767–773.

    Article  Google Scholar 

  • Norman, J. M., & Becker, F. (1995). Terminology in thermal infrared remote sensing of natural surfaces. Agricultural and Forest Meteorology, 77(3), 153–166.

    Article  Google Scholar 

  • Norman, J. M., Kustas, W. P., & Humes, K. S. (1995). Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 77(3), 263–293.

    Article  Google Scholar 

  • Planck, M. (1914). The theory of heat radiation (M. Masius, Trans.) (2nd ed.). P. Blakiston’s Son & Co. OL 7154661M.

    Google Scholar 

  • Rees, W. G. (2001). Physical principles of remote sensing. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Salisbury, J. W., Wald, A., & D’Aria, D. M. (1994). Thermal‐infrared remote sensing and Kirchhoff’s Law: 1. Laboratory measurements. Journal of Geophysical Research, 99(B6), 11897–11911.

    Article  Google Scholar 

  • Schaepman-Strub, G., Schaepman, M. E., Painter, T. H., Dangel, S., & Martonchik, J. V. (2006). Reflectance quantities in optical remote sensing-definitions and case studies. Remote Sensing of Environment, 103, 27–42.

    Article  Google Scholar 

  • Slater, P. N. (1980). Remote sensing: Optics and optical systems. Reading: Addison-Wesley Pub. Co.

    Google Scholar 

  • Stefan, J. (1879). Über die Beziehung zwischen der Wärmestrahlung und der Temperatur. In Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften, Bd. 79 (Wien 1879), S. 391–428.

    Google Scholar 

  • Stephens, G. L. (1994). Remote sensing of the lower atmosphere (Vol. 515). New York: Oxford University Press.

    Google Scholar 

  • Wannier, G. H. (1987). Statistical physics. New York: Dover Publications. Chapter 10.2. ISBN 978-0-486-65401-0. OCLC 15520414.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tang, H., Li, ZL. (2014). Basic Theory of Quantitative Remote Sensing. In: Quantitative Remote Sensing in Thermal Infrared. Springer Remote Sensing/Photogrammetry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42027-6_2

Download citation

Publish with us

Policies and ethics