Skip to main content

Quantum Gravity via Causal Dynamical Triangulations

  • Chapter
  • First Online:
Springer Handbook of Spacetime

Part of the book series: Springer Handbooks ((SHB))

Abstract

Causal dynamical triangulations (GlossaryTerm

CDT

) represent a lattice regularization of the sum over spacetime histories, providing us with a nonperturbative formulation of quantum gravity. The ultraviolet fixed points of the lattice theory can be used to define a continuum quantum field theory, potentially making contact with quantum gravity defined via asymptotic safety. We describe the formalism of GlossaryTerm

CDT

, its phase diagram, and the quantum geometries emerging from it. We also argue that the formalism should be able to describe a more general class of quantum-gravitational models of Hořava–Lifshitz type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDT:

causal dynamical triangulation

DT:

dynamical triangulation

IR:

infrared

UV:

ultraviolet

References

  1. S. Weinberg: Ultraviolet divergences in quantum theories of gravitation. In: General Relativity: Einstein Centenary Survey, ed. by S.W. Hawking, W. Israel (Cambridge University Press, Cambridge, UK 1979), 790-831

    Google Scholar 

  2. H. Kawai, M. Ninomiya: Renormalization group and quantum gravity, Nucl. Phys. B 336, 115 (1990)

    Google Scholar 

  3. H. Kawai, Y. Kitazawa, M. Ninomiya: Scaling exponents in quantum gravity near two-dimensions, Nucl. Phys. B 393, 280–300 (1993)

    Google Scholar 

  4. H. Kawai, Y. Kitazawa, M. Ninomiya: Ultraviolet stable fixed point and scaling relations in ( 2 + ϵ )-dimensional quantum gravity, Nucl. Phys. B 404, 684–716 (1993)

    Google Scholar 

  5. H. Kawai, Y. Kitazawa, M. Ninomiya: Renormalizability of quantum gravity near two dimensions, Nucl. Phys. B 467, 313–331 (1996)

    Google Scholar 

  6. T. Aida, Y. Kitazawa, H. Kawai, M. Ninomiya: Conformal invariance and renormalization group in quantum gravity near two-dimensions, Nucl. Phys. B 427, 158–180 (1994)

    Google Scholar 

  7. M. Reuter: Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57, 971–985 (1998)

    Google Scholar 

  8. A. Codello, R. Percacci, C. Rahmede: Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation, Ann. Phys. 324, 414 (2009)

    Google Scholar 

  9. M. Reuter, F. Saueressig: Functional renormalization group equations, asymptotic safety, and quantum Einstein gravity (2007), arXiv:0708.1317 [hep-th]

    Google Scholar 

  10. M. Niedermaier, M. Reuter: The asymptotic safety scenario in quantum gravity, Living Rev. Relativ. 9, 5 (2006)

    Google Scholar 

  11. H.W. Hamber, R.M. Williams: Nonlocal effective gravitational field equations and the running of Newton’s G, Phys. Rev. D 72, 044026 (2005)

    Google Scholar 

  12. D.F. Litim: Fixed points of quantum gravity, Phys. Rev. Lett. 92, 201301 (2004)

    Google Scholar 

  13. T. Regge: General relativity without coordinates, Nuovo Cim. 19, 558 (1961)

    Google Scholar 

  14. J. Ambjørn, B. Durhuus, J. Fröhlich: Diseases of triangulated random surface models, and possible cures, Nucl. Phys. B 257, 433–449 (1985)

    Google Scholar 

  15. J. Ambjørn, B. Durhuus, J. Fröhlich, P. Orland: The appearance of critical dimensions in regulated string theories, Nucl. Phys. B 270, 457–482 (1986)

    Google Scholar 

  16. F. David: Planar diagrams, two-dimensional lattice gravity and surface models, Nucl. Phys. B 257, 45 (1985)

    Google Scholar 

  17. A. Billoire, F. David: Microcanonical simulations of randomly triangulated planar random surfaces, Phys. Lett. B 168, 279–283 (1986)

    Google Scholar 

  18. V.A. Kazakov, A.A. Migdal, I.K. Kostov: Critical properties of randomly triangulated planar random surfaces, Phys. Lett. B 157, 295–300 (1985)

    Google Scholar 

  19. D.V. Boulatov, V.A. Kazakov, I.K. Kostov, A.A. Migdal: Analytical and numerical study of the model of dynamically triangulated random surfaces, Nucl. Phys. B 275, 641–686 (1986)

    Google Scholar 

  20. B. Dittrich: How to construct diffeomorphism symmetry on the lattice, Proc. 3rd Quantum Gravity Quantum Geom. Sch. (2011)

    Google Scholar 

  21. V.G. Knizhnik, A.M. Polyakov, A.B. Zamolodchikov: Fractal structure of 2D quantum gravity, Mod. Phys. Lett. A 3, 819 (1988)

    Google Scholar 

  22. F. David: Conformal field theories coupled to 2D gravity in the conformal gauge, Mod. Phys. Lett. A 3, 1651 (1988)

    Google Scholar 

  23. J. Distler, H. Kawai: Conformal field theory and 2D quantum gravity or Who’s afraid of Joseph Liouville?, Nucl. Phys. B 321, 509 (1989)

    Google Scholar 

  24. F. David: Loop equations and nonperturbative effects in two-dimensional quantum gravity, Mod. Phys. Lett. A 5, 1019–1030 (1990)

    Google Scholar 

  25. J. Ambjørn, J. Jurkiewicz, Y.M. Makeenko: Multiloop correlators for two-dimensional quantum gravity, Phys. Lett. B 251, 517–524 (1990)

    Google Scholar 

  26. J. Ambjørn, K.N. Anagnostopoulos: Quantum geometry of 2D gravity coupled to unitary matter, Nucl. Phys. B 497, 445 (1997)

    Google Scholar 

  27. J. Ambjørn, K.N. Anagnostopoulos, U. Magnea, G. Thorleifsson: Geometrical interpretation of the KPZ exponents, Phys. Lett. B 388, 713 (1996)

    Google Scholar 

  28. J. Ambjørn, J. Jurkiewicz, Y. Watabiki: On the fractal structure of two-dimensional quantum gravity, Nucl. Phys. B 454, 313–342 (1995)

    Google Scholar 

  29. H. Kawai, N. Kawamoto, T. Mogami, Y. Watabiki: Transfer matrix formalism for two-dimensional quantum gravity and fractal structures of space-time, Phys. Lett. B 306, 19 (1993)

    Google Scholar 

  30. J. Ambjørn, Y. Watabiki: Scaling in quantum gravity, Nucl. Phys. B 445, 129 (1995)

    Google Scholar 

  31. J. Ambjørn, J. Correia, C. Kristjansen, R. Loll: On the relation between Euclidean and Lorentzian 2-D quantum gravity, Phys. Lett. B 475, 24–32 (2000)

    Google Scholar 

  32. J. Ambjørn, R. Loll: Non-perturbative Lorentzian quantum gravity, causality and topology change, Nucl. Phys. B 536, 407–434 (1998)

    Google Scholar 

  33. C. Teitelboim: Causality versus gauge invariance in quantum gravity and supergravity, Phys. Rev. Lett. 50, 705–708 (1983)

    Google Scholar 

  34. C. Teitelboim: The proper time gauge in quantum theory of gravitation, Phys. Rev. D 28, 297–309 (1983)

    Google Scholar 

  35. B. Dittrich, R. Loll: Counting a black hole in Lorentzian product triangulations, Class. Quantum Gravity 23, 3849–3878 (2006)

    Google Scholar 

  36. P. di Francesco, E. Guitter: Critical and multicritical semi-random ( 1 + d ) -dimensional lattices and hard objects in d dimensions, J. Phys. A 35, 897–928 (2002)

    Google Scholar 

  37. B. Brügmann, E. Marinari: 4-d simplicial quantum gravity with a nontrivial measure, Phys. Rev. Lett. 70, 1908 (1993)

    Google Scholar 

  38. S. Bilke, Z. Burda, A. Krzywicki, B. Petersson, J. Tabaczek, G. Thorleifsson: 4-D simplicial quantum gravity: Matter fields and the corresponding effective action, Phys. Lett. B 432, 279 (1998)

    Google Scholar 

  39. J. Ambjørn, K.N. Anagnostopoulos, J. Jurkiewicz: Abelian gauge fields coupled to simplicial quantum gravity, J. High Energy Phys. 9908, 016 (1999)

    Google Scholar 

  40. J. Laiho, D. Coumbe: Evidence for asymptotic safety from lattice quantum gravity, Phys. Rev. Lett. 107, 161301 (2011)

    Google Scholar 

  41. D. Coumbe, J. Laiho: Exploring the phase diagram of lattice quantum gravity, PoS Lattice 2011, 334 (2011)

    Google Scholar 

  42. R. Loll: Discrete Lorentzian quantum gravity, Nucl. Phys. Proc. Suppl. 94, 96 (2001)

    Google Scholar 

  43. R. Loll: A discrete history of the Lorentzian path integral, Lecture Notes in Physics 631, 137 (2003)

    Google Scholar 

  44. J. Ambjørn, J. Jurkiewicz, R. Loll: Quantum gravity, or the art of building spacetime. In: Approaches to Quantum Gravity, ed. by D. Oriti (Cambridge Univ. Press, Cambridge 2009) pp. 341–359

    Google Scholar 

  45. R. Loll: The emergence of spacetime or quantum gravity on your desktop, Class. Quantum Gravity 25, 114006 (2008)

    Google Scholar 

  46. J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll: The emergence of (Euclidean) de Sitter space-time. In: Path Integrals – New Trends and Perspectives, ed. by W. Janke, A. Pelster (World Scientific, Singapore 2008) pp. 191–198

    Google Scholar 

  47. J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll: The quantum universe, Acta Phys. Pol. B 39, 3309 (2008)

    Google Scholar 

  48. J. Ambjørn, J. Jurkiewicz, R. Loll: Deriving spacetime from first principles, Ann. Phys. 19, 186 (2010)

    Google Scholar 

  49. J. Ambjørn, J. Jurkiewicz, R. Loll: Causal dynamical triangulations and the quest for quantum gravity. In: Foundations of Space and Time, ed. by G. Ellis, J. Murugan, A. Weltman (Cambridge Univ. Press, Cambridge 2012)

    Google Scholar 

  50. J. Ambjørn, J. Jurkiewicz, R. Loll: Lattice quantum gravity – An update, PoS Lattice 2010, 014 (2010)

    Google Scholar 

  51. J. Ambjørn, J. Jurkiewicz, R. Loll: Dynamically triangulating Lorentzian quantum gravity, Nucl. Phys. B 610, 347–382 (2001)

    Google Scholar 

  52. J. Ambjørn, J. Jurkiewicz, R. Loll: A non-perturbative Lorentzian path integral for gravity, Phys. Rev. Lett. 85, 924 (2000)

    Google Scholar 

  53. J. Ambjørn, J. Jurkiewicz, R. Loll: Quantum gravity as sum over spacetimes, Lecture Notes in Physics 807, 59 (2010)

    Google Scholar 

  54. J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll: CDT – An entropic theory of quantum gravity, arXiv:1007.2560 [hep-th]

    Google Scholar 

  55. J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll: Nonperturbative quantum gravity, Phys. Rep. 519, 127–210 (2012)

    Google Scholar 

  56. J. Ambjørn, A. Görlich, S. Jordan, J. Jurkiewicz, R. Loll: CDT meets Hořava–Lifshitz gravity, Phys. Lett. B 690, 413–419 (2010)

    Google Scholar 

  57. J. Ambjørn, J. Jurkiewicz, R. Loll: Emergence of a 4D world from causal quantum gravity, Phys. Rev. Lett. 93, 131301 (2004)

    Google Scholar 

  58. J. Ambjørn, J. Jurkiewicz, R. Loll: Reconstructing the universe, Phys. Rev. D 72, 064014 (2005)

    Google Scholar 

  59. J. Ambjørn, S. Jordan, J. Jurkiewicz, R. Loll: A second-order phase transition in CDT, Phys. Rev. Lett. 107, 211303 (2011)

    Google Scholar 

  60. J. Ambjørn, S. Jordan, J. Jurkiewicz, R. Loll: Second- and first-order phase transitions in CDT, Phys. Rev. D 85, 124044 (2012)

    Google Scholar 

  61. J. Ambjørn, J. Jurkiewicz, R. Loll: Semiclassical universe from first principles, Phys. Lett. B 607, 205–213 (2005)

    Google Scholar 

  62. A. Dasgupta, R. Loll: A proper time cure for the conformal sickness in quantum gravity, Nucl. Phys. B 606, 357 (2001)

    Google Scholar 

  63. J. Ambjørn, A. Dasgupta, J. Jurkiewicz, R. Loll: A Lorentzian cure for Euclidean troubles, Nucl. Phys. Proc. Suppl. 106, 977 (2002)

    Google Scholar 

  64. J. Ambjørn, J. Jurkiewicz: Four-dimensional simplicial quantum gravity, Phys. Lett. B 278, 42–50 (1992)

    Google Scholar 

  65. J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll: Planckian birth of the quantum de Sitter universe, Phys. Rev. Lett. 100, 091304 (2008)

    Google Scholar 

  66. J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll: The nonperturbative quantum de Sitter universe, Phys. Rev. D 78, 063544 (2008)

    Google Scholar 

  67. J.B. Hartle, S.W. Hawking: Wave function of the universe, Phys. Rev. D 28, 2960–2975 (1983)

    Google Scholar 

  68. P. Hořava: Quantum gravity at a Lifshitz point, Phys. Rev. D 79, 084008 (2009)

    Google Scholar 

  69. P. Hořava, C.M. Melby-Thompson: General covariance in quantum gravity at a Lifshitz point, Phys. Rev. D 82, 064027 (2010)

    Google Scholar 

  70. T. Budd: The effective kinetic term in CDT, J. Phys. Conf. Ser. 36, 012038 (2012)

    Google Scholar 

  71. T. Budd, R. Loll: Exploring torus universe in causal dynamical triangulations, Phys. Rev. D 88(2), 024015 (2013)

    Google Scholar 

  72. E. Kiritsis, G. Kofinas: Hořava–Lifshitz cosmology, Nucl. Phys. B 821, 467 (2009)

    Google Scholar 

  73. R. Brandenberger: Matter bounce in Hořava–Lifshitz cosmology, Phys. Rev. D 80, 043516 (2009)

    Google Scholar 

  74. G. Calcagni: Cosmology of the Lifshitz universe, J. High Energy Phys. 0909, 112 (2009)

    Google Scholar 

  75. D. Benedetti, J. Henson: Spectral geometry as a probe of quantum spacetime, Phys. Rev. D 80, 124036 (2009)

    Google Scholar 

  76. J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll, J. Gizbert-Studnicki, T. Trzesniewski: The semiclassical limit of causal dynamical triangulations, Nucl. Phys. B 849, 144 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jan Ambjørn or Andrzej Görlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ambjørn, J., Görlich, A., Jurkiewicz, J., Loll, R. (2014). Quantum Gravity via Causal Dynamical Triangulations. In: Ashtekar, A., Petkov, V. (eds) Springer Handbook of Spacetime. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41992-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41992-8_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41991-1

  • Online ISBN: 978-3-642-41992-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics