Skip to main content

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 1411 Accesses

Abstract

We can recall from Chapter 1 and Chapter 3 that currently-used stress-based approaches for FLP of marine structures are subjected to theoretical flaws. FCP theory could potentially overcome these deficiencies. This is the fundamental philosophy for the development of a UFLP method for marine structures. And the general meaning of the UFLP method discussed in this book has been briefly introduced there.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacila, A., Decoopman, X., Mesmacque, G., Voda, M. & Serban, V. A. (2007). “Study of underload effects on the delay induced by an overload in fatigue crack propagation”, International Journal of Fatigue, 29: 1781–1787.

    Article  MATH  Google Scholar 

  • Bao, H. & McEvily, A. J. (1998). “On plane stress-plane strain interactions in fatigue crack growth”, International Journal of Fatigue, 20(6): 441–448.

    Article  Google Scholar 

  • Barsom, J. M. & Rolfe, S. T. (1970). “Correlations between K IC and Charpy V-Notch test results in the transition temperature range”, ASTM-STP-466, 281–302.

    Google Scholar 

  • Borrego, L. P., Ferreira, J. M. & Costa, J. M. (2008). “Partial crack closure under block loading”, International Journal of Fatigue, 30: 1787–1796.

    Article  Google Scholar 

  • Borregoa, L. P., Costa, J. M. & Ferreira, J. M. (2005). “Fatigue crack growth in thin aluminium alloy sheets under loading sequences with periodic overloads”, Thin-Walled Structures, 43: 772–788.

    Article  Google Scholar 

  • Bowness, D. & Lee, M. M. K. (1996). “Prediction of weld toe magnification factors for semi-elliptical cracks in T-butt joint”, International Journal of Fatigue, 22: 369–387.

    Article  Google Scholar 

  • Bulloch, J. H. (1995). “Near threshold fatigue crack propagation behavior of CrMoV turbine steel”, Theoretical and Applied Fracture Mechanics, 23: 89–101.

    Article  Google Scholar 

  • Chen, F. L., Wang, F. & Cui, W. C. (2012). “Fatigue life prediction of engineering structures subjected to variable amplitude loading using the improved crack growth rate model”, Fatigue and Fracture of Engineering Materials and Structures, 35(3): 278–290.

    Article  Google Scholar 

  • Cui, W. C. (2002a). “A state-of-the-art review on fatigue life prediction methods for metal structures”, Journal of Marine Science and Technology, 7: 43–56.

    Article  Google Scholar 

  • Cui, W. C. (2002b). “Relation between crack growth rate curve and S-N curve for metal fatigue”, Journal of Ship Mechanics, 6(6): 93–106.

    Google Scholar 

  • Cui, W. C. & Huang, X. P. (2003). “A general constitutive relation for fatigue crack growth analysis of metal structures”, Acta Metall Sinica, 16: 342–354.

    Google Scholar 

  • Cui, W. C., Wang, F. & Huang, X. P. (2011). “A unified fatigue life prediction method for marine structures”, Marine Structures, 24: 1–29.

    Article  Google Scholar 

  • Dinda, S. & Kujawski, D. (2004). “Correlation and prediction of fatigue crack growth for different R-ratios using K max and ΔK + parameters”, Engineering Fracture Mechanics, 71: 1779–1790.

    Article  Google Scholar 

  • Dominguez, J., Zapatero, J. & Moreno, B. (1999). “A statistical model for fatigue crack growth under random loads including retardation effects”, Engineering Fracture Mechanics, 62: 351–369.

    Article  Google Scholar 

  • Dong, D. S., Mei, X. & Shi, L. D. (2000). “The relationship between the fracture mechanics parameters K C and K IC basing on the energy conservation principle”, Journal of Shanghai Maritime University, 21(4): 50–55 (in Chinese).

    Google Scholar 

  • Dowling, N. E. (1972). “Fatigue failure predictions for complicated stress-strain histories”, J Mater, 7: 71–87.

    MathSciNet  Google Scholar 

  • Dowling, N. E. (2007). Mechanical Behavior of Materials-Engineering Methods for Deformation, Fracture, and Fatigue (3rd ed.). Upper Saddle River, New Jersey: Pearson Prentice Hall, 586.

    Google Scholar 

  • Engesvik, K. M. & Moan, T. (1983). “Probabilistic analysis of the uncertainty in the fatigue capacity of welded joints”, Engineering Fracture Mechanics, 18(4): 743–762.

    Article  Google Scholar 

  • Farahmand, B. & Nikbin, K. (2008). “Predicting fracture and fatigue crack growth properties using tensile properties”, Engineering Fracture Mechanics, 75: 2144–2155.

    Article  Google Scholar 

  • Firrao, D., Matteis, P., Scavino, G., Ubertalli, G., Ienco, M. G., Pinasco, M. R., Stagno, E., Gerosa, R., Rivolta, B., Silvestri, A., Silva, G. & Ghidini, A. (2007). “Relationships between tensile and fracture mechanics properties and fatigue properties of large plastic mould steel blocks”, Materials Science and Engineering, A468–470: 193–200.

    Article  Google Scholar 

  • Girenko, V. S. & Dyadin, V. P. (1985). “Relationship between impact strength and fracture mechanics criteria delta sub (Ic), K sub (Ic) of structural steels and their welded joints”, AUTOM WELDING. 9: 13–20.

    Google Scholar 

  • Guo, W. (1999). “Three-dimensional analyses of plastic constraint for throughthickness cracked bodies”, Engineering Fracture Mechanics, 62: 383–407.

    Article  Google Scholar 

  • Huang, X. P. & Moan, T. (2007). “Improved modeling of the effect of R-ratio on crack growth rate”, International Journal of Fatigue, 29: 591–602.

    Article  Google Scholar 

  • Huang, X. P., Torgeir, M. & Cui, W. C. (2008). “An engineering model of fatigue crack growth under variable amplitude loading”, International Journal of Fatigue, 30: 2–10.

    Article  Google Scholar 

  • Irwin, G. R. (1960). “Plastic zone near a crack and fracture toughness”, in: Proceedings of the 7th Sagamore Research Conference on Mechanics & Metals Behavior of Sheet Material, New York, 4: 463–478.

    Google Scholar 

  • Ishihara, S. & McEvily, A. J. (2002). “Analysis of short fatigue crack growth in cast aluminum alloys”, International Journal of Fatigue, 24: 1169–1174.

    Article  Google Scholar 

  • Jha, S. K. & Ravichandran, K. S. (2000). “Effect of mean stress (stress ratio) and aging on fatigue-crack growth in a metastable beta titanium alloy, Ti-10V-2Fe-3Al”, Metallurgical and Materials Transactions, 3: 703–714.

    Article  Google Scholar 

  • Kalnaus, S., Fan, F., Jiang, Y. & Vasudevan, A. K. (2009). “An experimental investigation of fatigue crack growth of stainless steel 304L”, International Journal of Fatigue, 31: 840–849.

    Article  Google Scholar 

  • Kang, J. Y., Choi, B. I. & Lee, H. J. (2006). “Application of artificial neural network for predicting plain strain fracture toughness using tensile test results”, Fatigue and Fracture of Engineering Materials and Structures, 29: 321–329.

    Article  Google Scholar 

  • Khan, S. U., Alderliesten, R. C. & Benedictus, R. (2009). “Crack growth in fiber metal laminates under variable amplitude loading”, ICAF Symposium-Rotterdam, May 27–29.

    Google Scholar 

  • Kim, J. H. & Song, J. H. (1992). “Crack growth and closure behaviour of surface cracks under axial loading”, Fatigue and Fracture of Engineering Materials and Structurest, 15: 477–489.

    Article  Google Scholar 

  • Lee, S. Y., Choo, H., Liaw, P. K., Oliver, E. C. & Paradowska, A. M. (2009). “In situ neutron diffraction study of internal strain evolution around a crack tip under variable-amplitude fatigue-loading conditions”, Scripta Materialia, 60: 866–869.

    Article  Google Scholar 

  • Li, X. Y., Cui, W. C. & Zhang, W. M. (2006). “A modified constitutive relation fatigue crack growth”, Journal of Ship Mechanics, 10: 54–61 (in Chinese).

    Google Scholar 

  • Lin, X. B. & Smith, R. A. (1999). “Finite element modelling of fatigue crack growth of surface cracked plates (Part II: Crack shape change)”, Engineering Fracture Mechanics, 63: 523–540.

    Article  Google Scholar 

  • Ling, C. & Zheng, X. L. (1990). “Prediction of fatigue crack propagation rates of aluminum alloys from tensile properties”, Journal of Northwestern Polytechnical University, 8(1): 115–120 (in Chinese).

    Google Scholar 

  • Liu, Q., Wang, F., Huang, X. P. & Cui, W. C. (2006). “Three dimensional FE analysis of the plastic zone size near the crack tip”, Journal of Ship Mechanics, 10(5): 90–99 (in Chinese).

    Google Scholar 

  • Ma, J. F. & Lu, G. Z. (1999). “An analytical model for determining ΔK eff”, Mechanical Science and Technology, 18(3): 383–389.

    Google Scholar 

  • Mahmoud, M. A. (1988). “Quantitative prediction of growth patterns of surface fatigue cracks in tension analysis”, Engineering Fracture Mechanics, 30: 735–746.

    Article  Google Scholar 

  • Mahmoud, M. A. (1989). “Growth patterns of surface fatigue cracks under cyclic bending: a quantitative analysis”, Engineering Fracture Mechanics, 31: 357–369.

    Article  Google Scholar 

  • Makabe, C., Purnowidodo, A. & McEvily, A. J. (2004). “Effects of surface deformation and crack closure on fatigue crack propagation after overloading and underloading”, International Journal of Fatigue, 26: 1341–1348.

    Article  Google Scholar 

  • Matos, P. F. P., McEvily, A. J., Moreira, P. M. G. P. & Castro, P. M. S. T. (2007). “Analysis of the effect of cold-working of rivet holes on the fatigue life of an aluminum alloy”, International Journal of Fatigue, 29: 575–586.

    Article  Google Scholar 

  • McEvily, A. J., Ishihara, S. & Mutoh, Y. (2004). “On the number of overload induced delay cycles as a function of thickness”, International Journal of Fatigue, 26: 1311–1319.

    Article  Google Scholar 

  • McEvily, A. J., Bao, H. & Ishihara, S. (1999). “A modified constitutive relation for fatigue crack growth”, in: Wu, X. R. & Wang, Z. G. (ed.) Proceedings of the 7th International Fatigue Congress (Fatigue’99). Beijing: Higher Education Press, 329–336.

    Google Scholar 

  • Minakawa, K. & McEvily, A. J. (1981). “On near-threshold fatigue crack growth in steels and aluminum alloys”, in: “Fatigue Threshold” EMAS, U.K., 633–636.

    Google Scholar 

  • Newman, J. C., Crews, J. H., Bigelow, C. A. & Dawicke, D. S. (1995). “Variations of a global constraint factor in cracked bodies under tension and bending loads”, ASTM STP, 1224: 21–42.

    Google Scholar 

  • Newman, J. C. A. (1984). “Crack opening stress equation for fatigue crack growth”, International Journal of Fatigue, 24(3): R131–135.

    Google Scholar 

  • Newman, Jr. J. C., Phillips, E. P. & Everett, R. A. (1999). “Fatigue analyses under constant and variable amplitude loading using small-crack theory”, NASA/TM-1999-209329, ARL-TR-2001.

    Google Scholar 

  • Newman, Jr. J. C. & Raju, I. S. (1979). “Analyses of surface cracks in finite plates under tension or bending loads”, NASA Technical Paper, 1578.

    Google Scholar 

  • NIMS (1979). “Data sheets on fatigue properties of non-load-carrying cruciform welded joints of SM50B rolled steel for welded structure”, Effect of Specimen Size, NIMS Fatigue Datasheet No. 13, http://smds.nims.go.jp/MSDS/pdf/sheet/FBJ.pdf.

    Google Scholar 

  • Nykänen, T., Marquis, G. & Björk, T. (2009). “A simplified fatigue assessment method for high quality welded cruciform joints”, International Journal of Fatigue, 31(1): 79–87.

    Article  Google Scholar 

  • Oh, H. K. (1995). “Determination of fracture toughness by means of the uniaxial tensile test”, Journal of Materials Processing Technology, 54: 372–374.

    Article  Google Scholar 

  • Oh, H. K. (1996). “Determination of fracture toughness by uniaxial tensile test”, Engineering Fracture Metchanics, 55(5): 865–868.

    Article  Google Scholar 

  • Paris, P. C., Tada, H. & Donald, J. K. (1999). “Service load fatigue damage—a historical perspective”, International Journal of Fatigue, 21: S35–46.

    Article  Google Scholar 

  • Prawoto, Y. (2009). “Designing steel microstructure based on fracture mechanics approach”, Materials Science and Engineering, 507: 74–86.

    Article  Google Scholar 

  • Putra, I. S. & Schijve, J. (1992). “Crack opening stress measurements of surface cracks in 70752T 6 aluminium alloy plate specimen through electron fractography”, Fatigue and Fracture of Engineering Materials and Structures, 15: 323–338.

    Article  Google Scholar 

  • Rama, C. M. A., Palani, G. S. & Nagesh, R. (2004). “State-of-art review on fatigue crack growth analysis under variable amplitude loading”, Institution of Engineers (Civil Engg. Division), 85: 118–129.

    Google Scholar 

  • Rama, C. M. A., Palani, G. S. & Nagesh, R. (2007). “Remaining life prediction of cracked stiffened panels under constant and variable amplitude loading”, International Journal of Fatigue, 29: 1125–1139.

    Article  MATH  Google Scholar 

  • Schijve, J. (2003). “Fatigue of structures and materials in the 20th century and the state of the art”, Int J Fatigue, 25: 679–702.

    Article  MATH  Google Scholar 

  • Schijve, J., Skorupa, M., Skorupa, A., Machniewicz, T. & Gruszczynski, P. (2004). “Fatigue crack growth in the aluminium alloy D16 under constant and variable amplitude loading”, International Journal of Fatigue, 26: 1–15.

    Article  Google Scholar 

  • Silva, F. S. (2005). “The importance of compressive stresses on fatigue crack propagation rate”, International Journal of Fatigue, 27: 1441–1452.

    Article  Google Scholar 

  • Skorupa, M. (1998). “Load interaction effect during fatigue crack growth under variable amplitude loading—a literature review (Part I: Empirical trends)”, Fatigue and Fracture of Engineering Materials and Structures, 21: 987–1006.

    Article  Google Scholar 

  • Suresh, S. (1998). Fatigue of Materials (2nd ed.). Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Taheri, F., Trask, D. & Pegg, N. (2003). “Experimental and analytical investigation of fatigue characteristics of 350WT steel under constant and variable amplitude loadings”, Marine Structures, 16: 69–91.

    Article  Google Scholar 

  • Tiryakioglu, M. & Hudak, D. (2008). “On estimating the fracture toughness of Al-7Si-Mg alloys by sharp-notch tensile test results”, Materials Science and Engineering, A498: 501–503.

    Article  Google Scholar 

  • Voorwald, H. J. C. & Torres, M. A. S. (1991). “Modeling of fatigue crack growth following overloads”, International Journal of Fatigue, 13(5): 423–427.

    Article  Google Scholar 

  • Vosikovski, O. (1979), “The effect of stress ratio on fatigue crack growth rates in steels”, Engineering Fracture Mechanics, 11: 595–602.

    Article  Google Scholar 

  • Wang, F. & Cui, W. C. (2009). “Approximate method to determine the model parameters in a new crack growth rate model”, Marine Structures, 22(4): 744–757.

    Article  Google Scholar 

  • Wang, F. & Cui, W. C. (2010a). “Effect of three dimensional stress state on unstable fracture condition and crack opening level in a new crack growth model”, Acta Metallurgica Sinica (English Letters), 23(1): 41–49.

    Google Scholar 

  • Wang, F. & Cui, W. C. (2010b). “On the engineering approach to estimate the parameters in an improved crack growth rate model for fatigue life prediction”, Ship and Offshore Structures, 3(8): 227–241.

    Article  Google Scholar 

  • Wang, Y. F., Cui, W. C., Wu, X. Y., Wang, F. & Huang, X. P. (2008). “The extended McEvily model for fatigue crack growth analysis of metal structures”, International Journal of Fatigue, 30: 1851–1860.

    Article  Google Scholar 

  • Wu, S. X. (1985). “Shape change of surface during fatigue growth”, Engineering Fracture Mechanics, 22: 897–913.

    Article  Google Scholar 

  • Yuen, B. K. C. & Taheri, F. (2004). “The effects of loading frequency, tensile overload and compressive underload on the fatigue crack propagation behavior of polymethyl methacrylate”, Polymer Testing, 23: 491–500.

    Google Scholar 

  • Yuen, B. K. C. & Taheri, F. (2006). “Proposed modifications to the Wheeler retardation model for multiple overloading fatigue life prediction”, International Journal of Fatigue, 28: 1803–1819.

    Article  Google Scholar 

  • Zhang, B. & Guo, W. L. (2005). “Numerical simulation of surface crack propagation considering the crack closure effects and the three-dimensional stress constraints”, Chinese Journal Computational Mechanics, 22(6): 716–721 (in Chinese).

    Google Scholar 

  • Zhang, J., He, X. D. & Du, S. Y. (2003). “A simple engineering approach in the prediction of the effect of stress ratio on fatigue threshold”, International Journal of Fatigue, 25: 935–938.

    Article  Google Scholar 

  • Zhao, W., Zhang, J. X. & Jiang, Y. Y. (2008). “A study of fatigue crack growth of 7075-T651 aluminum alloy”, International Journal of Fatigue, 30: 1169–1180.

    Article  Google Scholar 

  • Zhou, C. & Cui, W. C. (2003). “Determination of fatigue crack growth rate using existing data”, Shipbuilding of China, 44: 74–79 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cui, W., Huang, X., Wang, F. (2014). Development of a UFLP Method for Marine Structures. In: Towards a Unified Fatigue Life Prediction Method for Marine Structures. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41831-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41831-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41830-3

  • Online ISBN: 978-3-642-41831-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics