Skip to main content

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 1495 Accesses

Abstract

The mechanical behavior of cracked bodies is typically analyzed using the theory of FM, which came into being as a special methodology when people found that the presence of cracks can obviously weaken the strength of the component and eventually lead to catastrophic failure of the structure. Thus FM deals with the study of how a crack or flaw in a structure propagates under applied loads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, T. L. (1995). Fracture Mechanics: Fundamentals and Applications (2nd ed.). London: CRC Press.

    MATH  Google Scholar 

  • ASTM (2004). Annual Book of ASTM Standards. West Conshohocken, PA. ASTM International.

    Google Scholar 

  • Barenblatt G. I. (1962). “The mathematical theory of equilibrium cracks in brittle fracture”, Advances in Applied Mechanics, Academic Press, 7: 55–129.

    Article  MathSciNet  Google Scholar 

  • Barsom, J. M. (ed.) (1987). “Fracture mechanics retrospective: early classic papers (1913–1965)”, The American Society of Testing and Materials (RPS 1), Philadelphia, PA.

    Google Scholar 

  • Bowness, D. & Lee, M. M. K. (2000). “Prediction of weld toe magnification factors for semi-elliptical cracks in T-butt joint”, International Journal of Fatigue, 22: 369–387.

    Article  Google Scholar 

  • Broek, D. (1974). Elementary Engineering Fracture Mechanics. Dordrecht /Boston / Lancaster: Martinus Nijhoff Publshers.

    Google Scholar 

  • China Research Institute of Aviation (1993). Handbook of Stress Intensity Factors. Beijing: Science Press (in Chinese).

    Google Scholar 

  • Creager M. & Paris, P. C. (1967). “Elastic field equations for blunt cracks with refrence to stress corrosion cracking”, International Journal of Fracture Mechanics, 3: 247–252.

    Article  Google Scholar 

  • Dowling, N. E. (2007). Mechanical Behavior of Materials-Engineering Methods for Deformation, Fracture, and Fatigue (3rd ed.). Upper Saddle River, New Jersey: Pearson Prentice Hall.

    Google Scholar 

  • Dugdale, D. S. (1960). “Yielding of steel sheets containing slits”, Journal of the Mechanics and Physics of Solids, 8: 100–108.

    Article  Google Scholar 

  • El Haddad, M. H., Topper, T. H. & Smith, K. N. (1979). “Prediction of non propagating cracks”, Engineering Fracture Mechanics, 11(3): 573–584.

    Article  Google Scholar 

  • El Minor, H., Kifani, A., Louah, M., Azari, Z. & Pluvinage, G. (2003). “Fracture toughness of high strength steel-using the notch stress intensity factor and volumetric approach”, Structural Safety, 25: 35–45.

    Article  Google Scholar 

  • Etube L. S. (2001). Fatigue and Fracture Mechanics of Offshore Structures. London and Bury St Edmunds: Professional Engineering Publishing Ltd.

    Google Scholar 

  • Griffith, A. A. (1920). “The phenomena of rupture and flow in solids”, Philosophical Transactions, Series A, 221: 163–198.

    Article  Google Scholar 

  • Guo, W. L. (1999). “Three-dimensional analyses of plastic constraint for through-thickness cracked bodies”, Engineering Fracture Mechanics, 62: 383–407.

    Article  Google Scholar 

  • Haddad, M. H., Topper, T. H. & Smith, K. N. (1979). “Prediction of non propagating cracks”, Engineering Fracture Mechanics, 11: 573–584.

    Article  Google Scholar 

  • Hoffmann, M. & Seeger, T. (1985). “Dugdale solutions for strain hardening materials”, in: The crack tip opening displacement in elastic-plastic fracture mechanics. Workshop on the CTOD Methodology, Geesthacht, Germany, 57–77.

    Google Scholar 

  • Huang, X. P., Han, Y., Cui, W. C., Wan, Z. Q. & Bian, R.G. (2005). “Fatigue life prediction of weld-joints under variable amplitude fatigue loads”, Journal of Ship Mechanics, 9(1): 89–97 (in Chinese).

    Google Scholar 

  • Hutchinson, J. W. (1968). “Singular behavior at the end of a tensile crack in a hardening material”, Journal of the Mechanics and Physics of Solids, 16: 13–31.

    Article  MATH  Google Scholar 

  • Irwin, G. R. (1948). “Fracture dynamics”, Fracturing of Metals. The American Society for Metals, Cleveland, 147–166.

    Google Scholar 

  • Irwin, G. R. (1956). “Onset of fast crack propagation in high strength steel and aluminum alloys”, Sagamore Research Conference Proceedings, 2: 289–305.

    Google Scholar 

  • Irwin, G. R. (1957). “Analysis of stresses and strains near the end of a crack traversing a plate”, Journal of Applied Mechanics, 24: 361–364.

    Google Scholar 

  • Irwin, G. R. (1960a). “Fracture mechanics”, in: Proceedings of 1st Symposium on Naval Structural Mechanics. Oxford: Pergamon Press, 557–594.

    Google Scholar 

  • Irwin, G. R. (1960b), “Plastic zone near a crack and fracture toughness”, in: Proceedings of the 7th Sagamore Research Conference on Mechanics and Metals Behavior of Sheet Material. New York, 4: 463–478.

    Google Scholar 

  • Kang, J. Y., Choi, B. I. & Lee, H. J. (2006). “Application of artificial neural network for predicting plain strain fracture toughness using tensile test results”, Fatigue and Fracture of Engineering Materials and Structures, 29: 321–329.

    Article  Google Scholar 

  • Kanninen, M. F. & Popelar, C. H. (1985). Advanced Fracture Mechanics. New York: Oxford University Press.

    MATH  Google Scholar 

  • Leis, B. N., Hopper, A. T., Ahmad, J., Broek, D. & Kanninen, M. F. (1986). “Critical review of the fatigue growth of short cracks”, Engineering Fracture Mechanics, 23(5): 883–898.

    Article  Google Scholar 

  • Liu, Q., Wang, F., Huang, X. P. & Cui, W. C. (2006). “Three dimensional FE analysis of the plastic zone size near the crack tip”, Journal of Ship Mechanics, 10(5): 90–99 (in Chinese).

    Google Scholar 

  • Machida, S. (1984). Ductile Fracture Mechanics. Tokyo: Nikkan Kogyo Shimbunsha (Newspaper Co.) (in Japanese).

    Google Scholar 

  • Margolin, B. Z., Shvetsova, V. A., Gulenko, A. G. & Kostylev, V. I. (2006). “Application of a new cleavage fracture criterion for fracture toughness prediction for RPV steels”, Fatigue and Fracture of Engineering Materials and Structures, 29: 697–713.

    Article  Google Scholar 

  • McEvily, A. J., Bao, H. & Ishihara, S. (1999). “A modified constitutive relation for fatigue crack growth”, Fatigue’99, 329–336.

    Google Scholar 

  • Mott, N. F. (1948). “Fracture of metals: theoretical considerations”, Engineering, 165: 16–18.

    Google Scholar 

  • Murakami, Y. (ed.) (1987). Stress Intensity Factors Handbook. New York: Pergamon Press.

    Google Scholar 

  • Orowan, E. (1948). “Fracture and strength of solids”, Reports on Progress in Physics, XII, 185–232.

    Google Scholar 

  • Paik, J. K. & Thayamballi, A. K. (2002). Ultimate Limit State Design of Steel Plated Structures. London: John Wiley & Sons.

    Google Scholar 

  • Pardoen, T., Scibetta, M., Chaouadi, R. & Delannay, F. (2000). “Analysis of the geometry dependence of fracture toughness at cracking initiation by comparison of circumferentially cracked round bars and SENB tests on Copper”, International Journal of Fracture, 103: 205–225.

    Article  Google Scholar 

  • Recho, N. (2009). “Boundary element analysis of generalized stress intensity factors”, ICOME2009, Oct. 18, Nanjing, China.

    Google Scholar 

  • Rice, J. R. (1968). “A path independent integral and the approximate analysis of strain concentrations by notches and cracks”, Journal of Applied Mechanics, 35: 379–386.

    Article  Google Scholar 

  • Rooke, D. R. & Cartwright, D. J. (1976). Compendium of Stress Intensity Factors. Uxbridge: H.M.S.O.

    Google Scholar 

  • Sarkar, R. & Ray, K. K. (2008). “Estimation of fracture toughness using miniature chevron-notched specimens”, Fatigue and Fracture of Engineering Materials and Structures, 31: 340–345.

    Article  Google Scholar 

  • Schijve, J. (2001). Fatigue of Structures and Materials. Dordrecht, Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Shih, C. F. (1981). “Relationship between the J-integral and the crack opening displacement for stationary and extending cracks”, Journal of the Mechanics and Physics of Solids, 29: 305–326.

    Article  MATH  Google Scholar 

  • Shih, C. F. & Hutchinson, J. W. (1976). “Fully plastic solutions and large scale yielding estimates for plane stress crack problems”, Journal of Engineering Materials and Technology, 98: 289–295.

    Article  Google Scholar 

  • Shih, Y. S. & Chen, J. J. (2002). “The stress intensity factor study of an elliptical cracked shaft”, Nuclear Engineering and Design, 214: 137–145.

    Article  Google Scholar 

  • Shyam, A. & Lara-Curzio, E. (2006). “The double-torsion testing technique for determination of fracture toughness and slow crack growth behavior of materials: a review”, Journal of Materials Science, 41: 4093–4104.

    Article  Google Scholar 

  • Sih, G. C. (1973). Handbook of Stress Intensity Factors. Bethleham, PA: Lehigh University.

    Google Scholar 

  • Tada, H., Paris, P. C. & Irwin, G. R. (1973). Stress Analysis of Cracks Handbook. Hellertown, PA: Del Research Corporation.

    Google Scholar 

  • Theocaris, S. & Wu, D. L. (1990). “A theoretical analysis of the stress intensity factors varying along the front of a surface crack”, International Journal of Fracture, 3: 243–250.

    Google Scholar 

  • Toribio, J., Matos, J. C., González, B. & Escuadra, J. (2009). “An automated procedure for the geometrical modeling of a surface crack front”, Struct Durab Health Monit, 123: 1–16.

    Google Scholar 

  • Troshchenko, V. T., Pokrovsky, V. V. & Yasniy, P. V. (1994). “Unstable fatigue crack propagation and fatigue fracture toughness of steels”, Fatigue and Fracture of Engineering Materials and Structures, 17(9): 991–1001.

    Article  Google Scholar 

  • Voorwald, H. J. C. & Torres, M. A. S. (1991). “Modeling of fatigue crack growth following overloads”, International Journal of Fatigue, 13(5): 423–427.

    Article  Google Scholar 

  • Wang, D. A., Lin, S. H. & Pan, J. (2005). “Stress intensity factors for spot welds and associated kinked cracks in cup specimens”, International Journal of Fatigue, 27: 581–598.

    Article  Google Scholar 

  • Wang, D. A. & Pan, J. (2005). “A computational study of local stress intensity factor olutions for kinked cracks near spot welds in lap-shear specimens”, International Journal of Solids and Structures, 42(24): 6277–6298.

    Article  MATH  Google Scholar 

  • Wells, A. A. (1961). “Unstable crack propagation in metals: cleavage and fast fracture”, in: Proceedings of the Crack Propagation Symposium, Paper 84, Cranfield, UK.

    Google Scholar 

  • Westergaard, H. M. (1939). “Bearing pressures and cracks”, Journal of Applied Mechanics, 6: 49–53.

    Google Scholar 

  • Williams, M. L. (1957). “On the stress distribution at the base of a stationary crack”, Journal of Applied Mechanics, 24: 109–114.

    MATH  Google Scholar 

  • Wu, X., Hu, D., Preuss, M., Withers, P. J. & Loretto, M. H. (2004). “The role of surface condition, residual stress and microstructure on pre-yield cracking in Ti44Al8Nb1B”, Intermetallics, 12(3): 281–287.

    Google Scholar 

  • Yuan, S., Xu, Y. J. & Williams, F. M. (2007). “Computation of stress intensity factors by the sub-region mixed finite element method of line”, Acta Mechanica Solida Sinica, 20(2): 149–162.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cui, W., Huang, X., Wang, F. (2014). Basic Concepts of Fracture Mechanics. In: Towards a Unified Fatigue Life Prediction Method for Marine Structures. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41831-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41831-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41830-3

  • Online ISBN: 978-3-642-41831-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics