Skip to main content

Admittance Control

  • Living reference work entry
  • First Online:
  • 809 Accesses

Definition

Control algorithm for a robot manipulator, even if not limited to manipulators, aimed at ensuring a programmable dynamic behavior of the machine in reaction to externally applied forces, resorting to an inner motion control loop.

Overview

Admittance control, similarly to impedance control, aims at imposing a desired dynamic behavior to the robot subject to external contact forces, in terms of programmable admittance parameters, i.e., inertia, stiffness, and damping.

As shown in the general scheme of Fig. 1, differently from the impedance control law which computes reference joint torques, the output of the admittance controller is a reference motion for an inner motion control loop based on the measured (or estimated) contact force and, if available, a given desired nominal motion.

Fig. 1
figure 1

General admittance control scheme

This is a preview of subscription content, log in via an institution.

References

  • Albu-Schäffer A, Eiberger O, Grebenstein M, Haddadin S, Ott C, Wimbök T, Wolf S, Hirzinger G (2008) Soft robotics: from torque feedback controlled lightweight robots to intrinsically compliant systems. IEEE Robot Autom Mag 15(3):20–30

    Article  Google Scholar 

  • Barrett Technology (2018) The WAM arm. https://www.barrett.com/wam-arm/. Accessed June 14 2018

  • Bascetta L, Ferretti G, Magnani G, Rocco P (2013) Walk-through programming for robotic manipulators based on admittance control. Robotica 31(07):1143–1153

    Article  Google Scholar 

  • Caccavale F, Natale C, Siciliano B, Villani L (1999) Six-dof impedance control based on angle/axis representations. IEEE Trans Robot Autom 15(2):289–300

    Article  Google Scholar 

  • Cirillo A, Ficuciello F, Natale C, Pirozzi S, Villani L (2016) A conformable force/tactile skin for physical human-robot interaction. IEEE Robot Autom Lett 1(1):41–48

    Article  Google Scholar 

  • Cirillo A, Cirillo P, De Maria G, Natale C, Pirozzi S (2015) An artificial skin based on optoelectronic technology. Sensors Actuators A Phys 212:110–122

    Article  Google Scholar 

  • De Luca A, Mattone R (2005) Sensorless robot collision detection and hybrid force/motion control. In: 2005 IEEE international conference on robotics and automation, Barcelona, pp 999–1004

    Google Scholar 

  • Dietrich A, Bussmann K, Petit F, Albu-Schäeffer A (2016) Whole-body impedance control of wheeled mobile manipulators: stability analysis and experiments on the humanoid robot Rollin’ Justin. Aut Robots 40:505–517

    Article  Google Scholar 

  • Fumagalli M, Ivaldi S, Randazzo M, Natale L, Metta G, Sandini G, Nori F (2012) Force feedback exploiting tactile and proximal force/torque sensing. Auton Robot 33:381–398

    Article  Google Scholar 

  • Keemink AQ, van der Kooij H, Stienen AH (2018) Admittance control for physical human–robot interaction. Int J Robot Res 37(11):1421–1444

    Google Scholar 

  • Ott C, Mukherjee R, Nakamura Y (2015) A hybrid system framework for unified impedance and admittance control. J Intell Robot Syst 78(3–4):359–375

    Article  Google Scholar 

  • Pires JN, Veiga G, Araùjo R (2008) Programming-by-demonstration in the coworker scenario for SMEs. Ind Robot 36(1):73–83

    Article  Google Scholar 

  • Roberson RE, Schwertassek R (1988) Dynamics of multibody systems. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciro Natale .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Natale, C. (2020). Admittance Control. In: Ang, M., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_89-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_89-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics