Skip to main content

Robot Pain and Empathy

  • Living reference work entry
  • First Online:
Encyclopedia of Robotics
  • 67 Accesses

Synonyms

Artificial pain; Artificial sympathy; Robot empathy

Definitions

Robot pain refers to a pain sensation designed for robots to acquire the capacity for empathy for others (humans and other robots). The following steps are considered as developmental processes from pain to empathy: embedding a pain nervous system into robots for them to feel pain, developing a mirror neuron system (MNS) for robots to feel pain in others, and developing empathetic capabilities such as emotional contagion, emotional empathy, cognitive empathy, and sympathy/compassion.

Overview

Cognitive developmental robotics aims to understand humans’ cognitive developmental processes based on constructive approaches utilizing computer simulations and real robot experiments (Asada et al., 2009). During the developmental process of cognitive functions, emotional capabilities such as emotion, sympathy, and empathy develop and play important roles in social interactions. The sensation of pain includes two distinct...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anshar M, Williams MA (2021) Simplified Pain Matrix Method for Artificial Pain Activation Embedded into Robot Framework. Int J of Soc Robotics 13:187–195. https://doi.org/10.1007/s12369-020-00632-1

    Article  Google Scholar 

  • Arkin RC (2009) Ethical robots in warfare. IEEE Technol Soc Mag 28(1):30–33. https://doi.org/10.1109/MTS.2009.931858

    Article  Google Scholar 

  • Asada M (2015) Towards artificial empathy. Int J Soc Robot 7:19–33

    Article  Google Scholar 

  • Asada M (2019) Artificial pain may induce empathy, morality, and ethics in the conscious mind of robots. Philosophies 4:38–47

    Article  Google Scholar 

  • Asada M, Hosoda K, Kuniyoshi Y, Ishiguro H, Inui T, Yoshikawa Y, Ogino M, Yoshida C (2009) Cognitive developmental robotics: a survey. IEEE Trans Auton Mental Dev 1(1):12–34

    Article  Google Scholar 

  • Buzsaki G (1996) The hippocampo-neocortical dialogue. Cerebral Cortex (New York, NY : 1991) 2(6):81–92

    Google Scholar 

  • Copete JL, Nagai Y, Asada M (2016) Motor development facilitates the prediction of others’ actions through sensorimotor predictive learning. In: Proceedings of the 6th IEEE international conference on development and learning, and epigenetic robotics (ICDL-EpiRob 2016), pp (CD–ROM)

    Google Scholar 

  • Edgar JL, Paul ES, Harris L, Penturn S, Nicol CJ (2012) No evidence for emotional empathy in chickens observing familiar adult conspecifics. PloS One 7(2):1–6

    Article  Google Scholar 

  • Friston K (2010) The free-energy principle: a unified brain theory? Nature Rev Neurosci 11(2):127–138. https://doi.org/10.1038/nrn2787

    Article  Google Scholar 

  • Gergely G, Watson JS (1999) Early socio-emotional development: contingency perception and the social-biofeedback model. In: Rochat P (ed) Early social cognition: understanding others in the first months of life. Lawrence Erlbaum, Mahwah, pp 101–136

    Google Scholar 

  • Goetz JL, Keltner D, Simon-Thomas E (2010) Compassion: an evolutionary analysis and empirical review. Psychol Bull 136:351–374

    Article  Google Scholar 

  • Gonzalez-Liencresa C, Shamay-Tsooryc SG, Br\(\ddot {\mathrm{u}}\)nea M (2013) Towards a neuroscience of empathy: ontogeny, phylogeny, brain mechanisms, context and psychopathology. Neurosci Biobehav Rev 37:1537–1548

    Google Scholar 

  • Holt-Lunstad J, Smith TB, Layton JB (2010) Social relationships and mortality risk: a meta-analytic review. PLoS Med 7(7):e1000316

    Article  Google Scholar 

  • Horii T, Nagai Y, Asada M (2016) Imitation of human expressions based on emotion estimation by mental simulation. Paladyn, J Behav Robot 7(1):40–54

    Google Scholar 

  • Horii T, Nagai Y, Asada M (2018) Modeling development of multimodal emotion perception guided by tactile dominance and perceptual improvement. IEEE Trans Cogn Dev Syst 10(3):762–775

    Article  Google Scholar 

  • Kawai Y, Nagai Y, Asada M (2012) Perceptual development triggered by its self-organization in cognitive learning. In: Proceedings of the 2012 IEEE/RSJ international conference on intelligent robots and systems, pp 5159–5164

    Google Scholar 

  • Kawakami A, Furukawa K, Katahira K, Okanoya K (2013) Sad music induces pleasant emotion. Front Psychol 4(311):1–15

    Google Scholar 

  • Kawasetsu T, Horii T, Ishihara H, Asada M (2018) Flexible tri-axis tactile sensor using spiral inductor and magnetorheological elastomer. IEEE Sens J 18(4):5834–5841

    Article  Google Scholar 

  • Keysers C, Wicker B, Gazzola V, Anton JL, Fogassi L, Gallese V (2004) A touching sight: Sii/pv activation during the observation and experience of touch. Neuron 42:335–346

    Article  Google Scholar 

  • Kuehn J, Haddadin S (2016) An artificial robot nervous system to teach robots how to feel pain and reflexively react to potentially damaging contacts. IEEE Robot Autom Lett 2(1):72–79. https://doi.org/10.1109/LRA.2016.2536360

    Article  Google Scholar 

  • Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150(3699):971–979. https://doi.org/10.1126/science.150.3699.971, https://science.sciencemag.org/content/150/3699/971, https://science.sciencemag.org/content/150/3699/971.full.pdf

  • Newport EL (1990) Maturational constraints on language learning. Cogn Sci 14:11–28

    Article  Google Scholar 

  • Ogino M, Nishikawa A, Asada M (2013) A motivation model for interaction between parent and child based on the need for relatedness. Front Psychol 4(Article618):324–334

    Google Scholar 

  • Premack D, Woodruff G (1978) Does the chimpanzee have a theory of mind? Behav Brain Sci 1:515–526

    Article  Google Scholar 

  • Price TJ, Inyang KE (2015) Chapter fourteen – commonalities between pain and memory mechanisms and their meaning for understanding chronic pain. In: Price TJ, Dussor G (eds) Molecular and cell biology of pain, progress in molecular biology and translational science, vol 131. Academic Press, pp 409–434. https://doi.org/10.1016/bs.pmbts.2014.11.010, https://www.sciencedirect.com/science/article/pii/S1877117314000258

  • Purves D, Augustine GA, Fitzpatrick D, Hall WC, LaMantia AS, McNamara JO, White LE (eds) (2012) Neuroscience, 5th edn. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Rizzolatti G, Sinigaglia C, (trans) FA (2008) Mirrors in the brain – how our minds share actions and emotions. Oxford University Press, Oxford

    Google Scholar 

  • Russell JA (1980) A circumplex model of affect. J Pers Soc Psychol 39:1161–1178

    Article  Google Scholar 

  • Seymour B (2019) Pain: a precision signal for reinforcement learning and control. Neuron 101(6):1029–1041. https://doi.org/10.1016/j.neuron.2019.01.055, http://www.sciencedirect.com/science/article/pii/S0896627319300820

  • Tronick E, Als H, Adamson L, Wise S, Brazelton TB (1978) The infant’s response to entrapment between contradictory messages in face-to-face interaction. J Am Acad Child Adolesc Psychiatr 17(1):1–13

    Article  Google Scholar 

  • de Waal FB (2008) Putting the altruism back into altruism: the evolution of empathy. Annu Rev Psychol 59:279–300

    Article  Google Scholar 

  • Watanabe A, Ogino M, Asada M (2007) Mapping facial expression to internal states based on intuitive parenting. J Robot Mech 19(3):315–323

    Article  Google Scholar 

  • Yi M, Zhang H (2011) Nociceptive memory in the brain: cortical mechanisms of chronic pain. J Neurosci 31(38):13343–13345. https://doi.org/10.1523/JNEUROSCI.3279-11.2011, https://www.jneuro sci.org/content/31/38/13343, https://www.jneurosci.org/content/31/38/13343.full.pdf

Download references

Acknowledgments

This chapter was partially supported by the JST Strategic Basic Research Programs (RIS-TEX) and the Research Area Human-Information Technology Ecosystem, entitled “Rule of Law in the Age of AI: Distributive Principles of Legal Liability for Multi-Species Societies” (January 2020 to March 2023), and also by the JST CREST Grant Number JPMJCR17A4, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Asada .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Asada, M. (2021). Robot Pain and Empathy. In: Ang, M.H., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_208-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_208-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics