Skip to main content

Legged Robots, Design of

  • Living reference work entry
  • First Online:
Encyclopedia of Robotics
  • 269 Accesses

Definition

Legged robot design generally refers to the deliberate selection, development, and integration of particular system features, from mechanism design and joint configuration to hardware selection and communication interfaces, in order to realize a robot that satisfies performance requirements.

Overview

Legged robot design is a precarious balancing act that involves carefully selecting the best leg and feet configuration and type, actuators, materials, and sensors to yield a platform that is capable of achieving the robot’s intended tasks. For example, in the case of legged robots designed to travel over multifaceted, unstructured terrain with discrete and isolated footholds, it is important that the robot be able to sense, coordinate, and place its end effectors (feet) at desired locations while also being able to handle unexpected disturbances and variations in terrain. These qualities are just a few of the most rudimentary requirements for a legged robot, and yet they...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Asano Y, Kozuki T, Ookubo S, Kawamura M, Nakashima S, Katayama T, Yanokura I, Hirose T, Kawaharazuka K, Makino S, et al (2016) Human mimetic musculoskeletal humanoid kengoro toward real world physically interactive actions. In: 2016 IEEE-RAS 16th international conference on humanoid robots (Humanoids). IEEE, pp 876–883

    Google Scholar 

  • Baccelliere L, Kashiri N, Muratore L, Laurenzi A, Kamedula M, Margan A, Cordasco S, Malzahn J, Tsagarakis NG (2017) Development of a human size and strength compliant bi-manual platform for realistic heavy manipulation tasks. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 5594–5601

    Google Scholar 

  • Beckhoff (2016) Ethercat – ultra high speed for automation. https://www.beckhoff.com

  • Bledt G, Powell M, Katz B, Di Carlo J, Wensing P, Kim S (2018a) Mit cheetah 3: design and control of a robust, dynamic quadruped robot. In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE

    Google Scholar 

  • Bledt G, Wensing PM, Ingersoll S, Kim S (2018b, Submitted) Contact model fusion for event-based locomotion in unstructured terrains. In: 2018 IEEE international conference on robotics and automation (ICRA), Brisbane

    Google Scholar 

  • Bobbert MF, Yeadon MR, Nigg BM (1992) Mechanical analysis of the landing phase in heel-toe running. J Biomech 25(3):223–234

    Article  Google Scholar 

  • Clark J, Goldman D, Lin PC, Lynch G, Chen T, Komsuoglu H, Full RJ, Koditschek DE (2007) Design of a bio-inspired dynamical vertical climbing robot. In: Robotics: science and systems, vol 1

    Google Scholar 

  • Corrigan S (2016) Introduction to the controller area network (can) (rev. b). http://www.ti.com/lit/an/sloa101b/sloa101b.pdf

  • Full RJ, Koditschek DE (1999) Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J Exp Biol 202(23):3325–3332

    Google Scholar 

  • Ghassemi S, Hong D (2016) Feasibility study of a novel robotic system ballu: Buoyancy assisted lightweight legged unit. In: 2016 IEEE-RAS 16th international conference on humanoid robots (Humanoids). IEEE, pp 144–144

    Google Scholar 

  • Haldane DW, Yim JK, Fearing RS (2017) Repetitive extreme-acceleration (14-g) spatial jumping with salto-1p. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 3345–3351

    Google Scholar 

  • Hanselman DC (2006) Brushless permanent-magnet motor design. Magna Physics Publishing

    Google Scholar 

  • Hashimoto K, Takezaki Y, Hattori K, Kondo H, Takashima T, Lim H, Takanishi A (2010) A study of function of the human’s foot arch structure using biped humanoid robot. In: Proceedings of the 2010 IEEE/RSJ International Conference on intelligent robots and systems, pp 2206–2211

    Google Scholar 

  • Heaston J, Hong D, Morazzani I, Ren P, Goldman G (2007) Strider: self-excited tripedal dynamic experimental robot. In: 2007 IEEE international conference on robotics and automation. IEEE, pp 2776–2777

    Google Scholar 

  • Hirai K, Hirose M, Haikawa Y, Takenaka T (1998) The development of honda humanoid robot. In: 1998 IEEE international conference on robotics and automation, 1998, vol 2. Proceedings. IEEE, pp 1321–1326

    Google Scholar 

  • Hooks J, Ahn MS, Yu J, Zhang X, Zhu T, Chae H, Hong D (2020) Alphred: a multi-modal operations quadruped robot for package delivery applications. IEEE Robot Autom Lett 5(4):5409–5416

    Article  Google Scholar 

  • Hopkins MA, Hong DW, Leonessa A (2015) Compliant locomotion using whole-body control and divergent component of motion tracking. In: 2015 IEEE international conference on robotics and automation (ICRA). IEEE, pp 5726–5733

    Google Scholar 

  • Hubicki C, Grimes J, Jones M, Renjewski D, Spröwitz A, Abate A, Hurst J (2016) Atrias: design and validation of a tether-free 3D-capable spring-mass bipedal robot. Int J Robot Res 35(12):1497–1521

    Article  Google Scholar 

  • Hutter M, Gehring C, Jud D, Lauber A, Bellicoso CD, Tsounis V, Hwangbo J, Bodie K, Fankhauser P, Bloesch M, et al (2016) Anymal-a highly mobile and dynamic quadrupedal robot. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 38–44

    Google Scholar 

  • Inoue H, Hirukawa H (2000) Hrp: humanoid robotics project of miti. J Robot Soc Jpn 18(8):1089–1092

    Article  Google Scholar 

  • Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Harada K, Yokoi K, Hirukawa H (2003) Biped walking pattern generation by using preview control of zero-moment point. In: ICRA, vol 3, pp 1620–1626

    Google Scholar 

  • Kato I, Ohteru S, Kobayashi H, Shirai K, Uchiyama A (1974) Information-power machine with senses and limbs. In: On theory and practice of robots and manipulators. Springer, pp 11–24

    Google Scholar 

  • Kellaris N, Venkata VG, Smith GM, Mitchell SK, Keplinger C (2018) Peano-hasel actuators: muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci Robot 3(14):eaar3276

    Google Scholar 

  • Kenneally GD, De A, Koditschek DE (2016) Design principles for a family of direct-drive legged robots. IEEE Robot Autom Lett 1(2):900–907

    Article  Google Scholar 

  • Kim S, Wensing PM (2017) Design of dynamic legged robots. Found Trends Robot 5(2):117–190

    Article  Google Scholar 

  • Kim S, Clark JE, Cutkosky MR (2006) iSprawl: design and tuning for high-speed autonomous open-loop running. Int J Robot Res 25(9):903–912

    Article  Google Scholar 

  • Kim S, Spenko M, Trujillo S, Heyneman B, Santos D, Cutkosky MR, et al (2008) Smooth vertical surface climbing with directional adhesion. IEEE Trans Robot 24(1):65–74

    Article  Google Scholar 

  • Klamt T, Rodriguez D, Schwarz M, Lenz C, Pavlichenko D, Droeschel D, Behnke S (2018) Supervised autonomous locomotion and manipulation for disaster response with a centaur-like robot. arXiv preprint: 180906802

    Google Scholar 

  • Kugelstadt T (2016) The rs-485 design guide (rev. c) – texas instruments. http://www.ti.com/lit/an/slla272c/slla272c.pdf

  • Liston R, Mosher R (1968) A versatile walking truck. In: Transportation engineering conference

    Google Scholar 

  • Lohmeier S, Buschmann T, Schwienbacher M, Ulbrich H, Pfeiffer F (2006) Leg design for a humanoid walking robot. In: 2006 6th IEEE-RAS international conference on humanoid robots. IEEE, pp 536–541

    Google Scholar 

  • Lohmeier S, Buschmann T, Ulbrich H, Pfeiffer F (2009) Humanoid robot lola-research platform for high-speedwalking. In: Motion and vibration control. Springer, pp 221–230

    MATH  Google Scholar 

  • McGeer T, et al (1990) Passive dynamic walking. Int J Robot Res 9(2):62–82

    Article  Google Scholar 

  • Moore E, Campbell D, Grimminger F, Buehler M (2002) Reliable stair climbing in the simple hexapod ’RHex’. In: IEEE international conference on robotics and automation, 2002. Proceedings. ICRA’02. IEEE, vol 3, pp 2222–2227

    Google Scholar 

  • Pratt GA, Williamson MM (1995) Series elastic actuators. In: 1995 IEEE/RSJ international conference on intelligent robots and systems 95. Human robot interaction and cooperative robots, Proceedings. IEEE, vol 1, pp 399–406

    Google Scholar 

  • Raibert M, Blankespoor K, Nelson G, Playter R (2008) Bigdog, the rough-terrain quadruped robot. IFAC Proc Vol 41(2):10822–10825

    Article  Google Scholar 

  • Raibert MH (1986) Legged robots that balance. MIT Press

    Book  Google Scholar 

  • Roberts SF, Koditschek DE (2016) RHex slips on granular media

    Google Scholar 

  • Rygg LA (1893) Mechanical horse. Patent No. US491927A, Filed Apr. 1892, Issued Feb. 14th, 1893

    Google Scholar 

  • Sakagami Y, Watanabe R, Aoyama C, Matsunaga S, Higaki N, Fujimura K (2002) The intelligent asimo: System overview and integration. In: IEEE/RSJ international conference on intelligent robots and systems, 2002. IEEE, vol 3, pp 2478–2483

    Google Scholar 

  • Semini C, Goldsmith J, Manfredi D, Calignano F, Ambrosio EP, Pakkanen J, Caldwell DG (2015) Additive manufacturing for agile legged robots with hydraulic actuation. In: 2015 International Conference on Advanced Robotics (ICAR). IEEE, pp 123–129

    Google Scholar 

  • Semini C, Barasuol V, Goldsmith J, Frigerio M, Focchi M, Gao Y, Caldwell DG (2017) Design of the hydraulically actuated, torque-controlled quadruped robot hyq2max. IEEE/ASME Trans Mechatron 22(2):635–646

    Article  Google Scholar 

  • Seok S, Wang A, Otten D, Kim S (2012) Actuator design for high force proprioceptive control in fast legged locomotion. In: 2012 IEEE/RSJ international conference on intelligent robots and systems, pp 1970–1975. https://doi.org/10.1109/IROS.2012.6386252

  • Tsagarakis NG, Caldwell DG, Negrello F, Choi W, Baccelliere L, Loc V, Noorden J, Muratore L, Margan A, Cardellino A, et al (2017) Walk-man: a high-performance humanoid platform for realistic environments. J Field Robot 34(7):1225–1259

    Article  Google Scholar 

  • Vukobratović M, Stepanenko J (1972) On the stability of anthropomorphic systems. Math Biosci 15(1–2):1–37

    Article  Google Scholar 

  • Wahrmann D, Wu Y, Sygulla F, Hildebrandt AC, Wittmann R, Seiwald P, Rixen D (2018) Time-variable, event-based walking control for biped robots. Int J Adv Robot Syst 15(2):1729881418768918

    Article  Google Scholar 

  • Wensing PM, Wang A, Seok S, Otten D, Lang J, Kim S (2017) Proprioceptive actuator design in the mit cheetah: impact mitigation and high-bandwidth physical interaction for dynamic legged robots. IEEE Trans Robot 33(3):509–522

    Article  Google Scholar 

  • Yu J, Hooks J, Ghassemi S, Pogue A, Hong D (2016) Investigation of a non-anthropomorphic bipedal robot with stability, agility, and simplicity. In: 2016 13th international conference on ubiquitous robots and ambient intelligence (URAI). IEEE, pp 11–15

    Google Scholar 

  • Zhang X (2019) Application of Proprioception Quasi-Direct Drive Actuators on Dynamic Robotic Systems. University of California, Los Angeles

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dennis W. Hong , Min Sung Ahn , Joshua R. Hooks or Jeffrey C. Yu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hong, D.W., Ahn, M.S., Hooks, J.R., Yu, J.C. (2020). Legged Robots, Design of. In: Ang, M.H., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_152-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_152-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics