Skip to main content

Hydrodynamic Perception in Seals and Sea Lions

  • Chapter
  • First Online:
Flow Sensing in Air and Water

Abstract

Marine mammals often forage in dark and turbid waters. While dolphins use echolocation under such conditions, pinnipeds seem to lack this sensory system. Instead, species of the families Phocidae (true seals) and Otariidae (eared seals) both possess richly innervated whiskers (synonymously “vibrissae”) representing highly sensitive hydrodynamic receptors that enable these animals to detect fish-generated water movements. The third family of pinnipeds, the Odobenidae (walruses), is less well studied. As water movements in the wake of fishes persist for several minutes, they constitute hydrodynamic trails that should be trackable by piscivorous predators. Hydrodynamic trail following has indeed been shown for the harbor seal (Phoca vitulina) and the California sea lion (Zalophus californianus). However, in experiments with a sea lion aging of the trails resulted in an earlier decrease in performance. This difference in tracking performance most likely is due to differences in the structure of the respective vibrissal hair shaft. In the harbor seal the high sensitivity and excellent tracking performance is ascribed to the specialized undulated structure of the whiskers that largely suppresses self-generated noise in the actively moving animal. In contrast, the whiskers of a swimming California sea lion, which are smooth in outline, are substantially affected by self-generated noise. However, in the sea lion such self-generated noise contains a characteristic carrier frequency that might allow hydrodynamic reception by being modulated in response to hydrodynamic stimuli impinging on the hair. Thus, in the course of pinniped evolution at least two types of whiskers evolved that realized different mechanisms for the reception of external hydrodynamic information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

F-SC:

Follicle sinus complex

PIV:

Particle image velocimetry

VRGs:

Vortex ring generators

HMC:

Head-mounted camera

CCD:

Charge-coupled device

VIVs:

Vortex-induced vibrations

SNR:

Signal-to-noise ratio

References

  • Akamatsu T, Okumura T, Novarini N, Yan HY (2002) Empirical refinements applicable to the recording of fish sounds in small tanks. J Acoust Soc Am 112:3073–3082. doi:10.1121/1.1515799

    Article  PubMed  Google Scholar 

  • Aksnes DL, Giske J (1993) A theoretical model of aquatic visual feeding. Ecol Model 67:233–250. http://dx.doi.org/10.1016/0304-3800(93)90007-F

    Google Scholar 

  • Aksnes DL, Utne ACW (1997) A revised model of visual range in fish. Sarsia 82:137–147

    Google Scholar 

  • Andersen SM, Lydersen C, Grahl-Nielsen O, Kovacs KM (2004) Autumn diet of harbor seals (Phoca vitulina) at Prins Karls Forland, Svalbard, assessed via scat and fatty-acid analyses. Canad J Zool 82:1230–1245

    Article  Google Scholar 

  • Au WWL (1993) The sonar of dolphins. Springer, New York

    Book  Google Scholar 

  • Baumann KI, Moll I, Halata Z (2003) The merkel cell: structure, development, function, and cancerogenesis. Springer, Berlin, Heidelberg, New York

    Book  Google Scholar 

  • Blake RW (1983) Functional design and burst-and-coast swimming in fishes. Can J Zool 61:2491–2494

    Article  Google Scholar 

  • Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. Progress in zoology 41. Gustav Fischer, Stuttgart, Jena, New York

    Google Scholar 

  • Blickhan R, Krick CM, Zehren D, Nachtigall W (1992) Generation of a vortex chain in the wake of a subundulatory swimmer. Naturwissenschaften 79:220–221

    Article  Google Scholar 

  • Bodson A, Miersch L, Mauck B, Dehnhardt G (2006) Underwater auditory localization by a swimming harbor seal (Phoca vitulina). J Acoust Soc Am 120:1550–1557

    Article  PubMed  Google Scholar 

  • Bodson A, Miersch L, Dehnhardt G (2007) Underwater localization of pure tones by harbor seals (Phoca vitulina). J Acoust Soc Am 122:2263–2269. doi:10.1121/1.2775424

    Article  PubMed  Google Scholar 

  • Bolanowski SJ, Gescheider GA, Verrillo RT, Checkosky CM (1988) Four channels mediate the mechanical aspects of touch. J Acoust Soc Am 84:1680–1694. doi:10.1121/1.397184

    Article  PubMed  Google Scholar 

  • Dehnhardt G (1990) Preliminary results from psychophysical studies on the tactile sensitivity in marine mammals. In: Thomas JA, Kastelein RA (eds) Sensory abilities of cetaceans. Plenum Press, New York, pp 435–446

    Chapter  Google Scholar 

  • Dehnhardt G (1994) Tactile size discrimination by a California sea lion (Zalophus californianus) using its mystacial vibrissae. J Comp Physiol A 175:791–800

    Article  CAS  PubMed  Google Scholar 

  • Dehnhardt G, Dücker G (1996) Tactual discrimination of size and shape by a California sea lion (Zalophus californianus). Anim Learn Behav 24:366–374

    Article  Google Scholar 

  • Dehnhardt G, Kaminski A (1995) Sensitivity of the mystacial vibrissae of harbor seals (Phoca vitulina) for size differences of actively touched objects. J Exp Biol 198:2317–2323

    CAS  PubMed  Google Scholar 

  • Dehnhardt G, Mauk B (2008) Mechanoreception in secondarily aquatic vertebrates. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, Los Angeles, pp 295–314

    Google Scholar 

  • Dehnhardt G, Sinder M, Sachser N (1997) Tactual discrimination of size by means of mystacial vibrissae in harbor seals: in air versus underwater. Zeitschrift für Säugetierkunde 62:40–43

    Google Scholar 

  • Dehnhardt G, Mauck B, Hyvärinen H (1998a) Ambient temperature does not affect the tactile sensitivity of mystacial vibrissae of harbor seals. J Exp Biol 201:3023–3029

    CAS  PubMed  Google Scholar 

  • Dehnhardt G, Mauck B, Bleckmann H (1998b) Seal whiskers detect water movements. Nature 394:235–236

    Article  CAS  Google Scholar 

  • Dehnhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail following in harbor seals (Phoca vitulina). Science 293:102–104

    Article  CAS  PubMed  Google Scholar 

  • Dehnhardt G, Mauck B, Hyvärinen H (2003) The functional significance of the vibrissal system of marine mammals. In: Baumann KI, Moll I, Halata Z (eds) The merkel cell: structure, development, function, and cancerogenesis. Springer, Berlin, Heidelberg, New York, pp 127–135

    Chapter  Google Scholar 

  • Drucker EG, Lauder GV (2002) Experimental hydrodynamics of fish locomotion: functional insights from wake visualization. Integr Comp Biol 4:243–257

    Article  Google Scholar 

  • Dykes RW (1975) Afferent fibers from mystacial vibrissae of cats and seals. J Neurophysiol 38:650–662

    CAS  PubMed  Google Scholar 

  • Ebara S, Kumamoto K, Matsuura T, Mazurkiewicz JE, Rice FL (2002) Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopic study. J Comp Neurol 449:103–119. doi:10.1002/cne.10277

    Article  PubMed  Google Scholar 

  • Fish FE, Innes S, Ronald K (1988) Kinematics and estimated thrust production of swimming harp and ringed seals. J Exp Biol 137:157–173

    CAS  PubMed  Google Scholar 

  • Folkow LP, Blix AS (1989) Thermoregulatory control of expired air temperature in diving harp seals. Am J Physiol 257:R306–R310

    CAS  PubMed  Google Scholar 

  • Gentry RL (1967) Underwater auditory localization in the California sea lion (Zalophus californianus). J Aud Res 7:187–193

    Google Scholar 

  • Gescheider GA, Thorpe JM, Goodarz J, Bolanowski SJ (1997) The effects of skin temperature on the detection and discrimination of tactile stimulation. Somatosens Mot Res 14:181–188

    Article  CAS  PubMed  Google Scholar 

  • Ginter CC, Marshall CD (2010) Morphological analysis of the bumpy profile of phocid vibrissae. Mar Mammal Sci 26:733–743. doi:10.1111/j.1748-7692.2009.00365.x

    Google Scholar 

  • Ginter CC, DeWitt TJ, Fish FE, Marshall CD (2012) Fused traditional and geometric morphometrics demonstrate pinniped whisker diversity. PLoS One 7:1–10

    Article  Google Scholar 

  • Gläser N, Wieskotten S, Otter C, Dehnhardt G, Hanke W (2011) Hydrodynamic trail following in a California sea lion (Zalophus californianus). J Comp Physiol A 197:141–151

    Article  Google Scholar 

  • Grant R, Wieskotten S, Wengst N, Prescott T, Dehnhardt G (2013) Vibrissal touch sensing in the harbor seal (Phoca vitulina): how do seals judge size? J Comp Physiol A 199:521–533. doi:10.1007/s00359-013-0797-7

    Article  Google Scholar 

  • Hanke W, Bleckmann H (2004) The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry. J Exp Biol 207:1585–1596. doi:10.1242/jeb.00922

    Article  PubMed  Google Scholar 

  • Hanke W, Brücker C, Bleckmann H (2000) The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203:1193–1200

    CAS  PubMed  Google Scholar 

  • Hanke FD, Dehnhardt G, Schaeffel F, Hanke W (2006a) Corneal topography, refractive state, and accommodation in harbor seals (Phoca vitulina). Vis Res 46:837–847. doi:10.1016/j.visres.2005.09.019

    Article  PubMed  Google Scholar 

  • Hanke W, Römer R, Dehnhardt G (2006b) Visual fields and eye movements in a harbor seal (Phoca vitulina). Vis Res 46:2804–2814

    Article  PubMed  Google Scholar 

  • Hanke FD, Hanke W, Hoffman KP, Dehnhardt G (2008a) Optokinetic nystagmus in harbor seals (Phoca vitulina). Vis Res 48:304–315

    Article  PubMed  Google Scholar 

  • Hanke FD, Kröger RHH, Siebert U, Dehnhardt G (2008b) Multifocal lenses in a monochromat: the harbor seal. J Exp Biol 211:3315–3322. doi:10.1242/jeb.018747

    Article  PubMed  Google Scholar 

  • Hanke FD, Hanke W, Scholtyssek C, Dehnhardt G (2009a) Basic mechanisms in pinniped vision. Exp Brain Res 199:299–311. doi:10.1007/s00221-009-1793-6

    Article  PubMed  Google Scholar 

  • Hanke FD, Peichl L, Dehnhardt G (2009b) Retinal ganglion cell topography in juvenile harbor seals (Phoca vitulina). Brain Behav Evol 74:102–109. doi:10.1159/000235612

    Article  PubMed  Google Scholar 

  • Hanke W, Witte M, Miersch L, Brede M, Oeffner J, Michael M, Hanke F, Leder A, Dehnhardt G (2010) Harbor seal vibrissa morphology suppresses vortex-induced vibrations. J Exp Biol 213:2665–2672. doi:10.1242/jeb.043216

    Article  PubMed  Google Scholar 

  • Hanke FD, Scholtyssek C, Hanke W, Dehnhardt G (2011) Contrast sensitivity in a harbor seal (Phoca vitulina). J Comp Physiol A 197:203–210. doi:10.1007/s00359-010-0600-y

    Article  Google Scholar 

  • Hauksson E, Bogason V (1997) Comparative feeding of gray (Halichoerus grypus) and common seals (Phoca vitulina) in coastal waters of Iceland, with a note on the diet of hooded (Cystophora cristata) and harp seals (Phoca groenlandica). J Northwest Atl Fish Sci 22:125–135

    Article  Google Scholar 

  • Hepper PG, Wells DL (2005) How many footsteps do dogs need to determine the direction of an odour trail? Chem Senses 30:291–298. doi:10.1093/chemse/bji023

    Article  PubMed  Google Scholar 

  • Hinch SG, Standen EM, Healey MC, Farrell AP (2002) Swimming patterns and behaviour of upriver-migrating adult pink (Oncorhynchus gorbuscha) and sockeye (O. nerka) salmon as assessed by EMG telemetry in the Fraser River, British Columbia. Canada Hydrobiol 483:147–160

    Article  Google Scholar 

  • Hobson ES (1966) Visual orientation and feeding in seals and sea lions. Nature 210:326–327. doi:10.1038/210326a0

    Article  Google Scholar 

  • Hokkanen JEI (1990) Temperature regulation of marine mammals. J Theor Biol 145:465–485. doi:10.1016/s0022-5193(05)80482-5

    Article  CAS  PubMed  Google Scholar 

  • Hyvärinen H (1989) Diving in darkness: whiskers as sense organs of the ringed seal (Phoca hispida saimensis). J Zool 218:663–678

    Article  Google Scholar 

  • Hyvärinen H (1995) Structure and function of the vibrissae of the ringed seal (Phoca hispida L.). In: Kastelein RA, Thomas JA, Nachtigall PE (eds) Sensory systems of aquatic mammals. De Spil Publishers, Woerden, pp 429–445

    Google Scholar 

  • Hyvärinen H, Katajisto H (1984) Functional structure of the vibrissae of the ringed seal (Phoca hispida Schr.). Acta Zoologica Fennica 171:27–30

    Google Scholar 

  • Irving L (1969) Temperature regulation in marine mammals. In: Andersen HT (ed) The biology of marine mammals. Academic Press, New York, pp 147–174

    Google Scholar 

  • Käkelä R, Hyvärinen H (1993) Fatty acid composition of fats around the mystacial and superciliary vibrissae differs from that of blubber in the Saimaa ringed seal (Phoca hispida saimensis). Comp Biochem Physiol B 105:547–552

    PubMed  Google Scholar 

  • Käkelä R, Hyvärinen H (1996) Site-specific fatty acid composition in adipose tissues of several northern aquatic and terrestrial mammals. Comp Biochem Physiol B 115:501–514. doi:10.1016/s0305-0491(96)00150-2

    Article  Google Scholar 

  • Kastak D, Schusterman RJ (1998) Low-frequency amphibious hearing in pinnipeds: methods, measurements, noise, and ecology. J Acoust Soc Am 103:2216–2228

    Article  CAS  PubMed  Google Scholar 

  • Kastelein RA, van Gaalen MA (1988) The sensitivity of the vibrissae of a pacific walrus (Odobenus rosmarus divergens). Part 1. Aquat Mammals 14:123–133

    Google Scholar 

  • Kvadsheim PH, Gotaas ARL, Folkow LP, Blix AS (1997) An experimental validation of heat loss models for marine mammals. J Theor Biol 184:15–23

    Article  Google Scholar 

  • Ladygina TF, Popov VV, Supin AY (1985) Somatotopic projections in the cerebral cortex of the fur seal (Callorhinus ursinus). Acad Sci Moskow 17:344–351

    CAS  Google Scholar 

  • Lavigne DM, Bernholz CD, Ronald K (1977) Functional aspects of pinniped vision. In: Harrison RJ (ed) Functional anatomy of marine mammals, vol 3. Academic Press, London, pp 135–173

    Google Scholar 

  • Levenson DH, Schusterman RJ (1999) Dark adaptation and visual sensitivity in shallow and deep-diving pinnipeds. Mar Mammal Sci 15:1303–1313

    Article  Google Scholar 

  • Ling JK (1966) The skin and hair of the southern elephant seal, Mirounga leonina (Linn.). Aust J Zool 14:855–866

    Article  Google Scholar 

  • Ling JK (1977) Vibrissae of marine mammals. In: Harrison RJ (ed) Functional anatomy of marine mammals. Academic Press, London, pp 387–415

    Google Scholar 

  • Marshall CD, Amin H, Kovacs KM, Lydersen C (2006) Microstructure and innervation of the mystacial vibrissal follicle-sinus complex in bearded seals, Erignathus barbatus (Pinnipedia: Phocidae). Anat Rec A 288:13–25

    Google Scholar 

  • Mauck B, Eysel U, Dehnhardt G (2000) Selective heating of vibrissal follicles in seals (Phoca vitulina) and dolphins (Sotalia fluviatilis guianensis). J Exp Biol 203:2125–2131

    CAS  PubMed  Google Scholar 

  • Miersch L, Hanke W, Wieskotten S, Hanke FD, Oeffner J, Leder A, Brede M, Witte M, Dehnhardt G (2011) Flow sensing by pinniped whiskers. Phil Trans R Soc B 366:3077–3084. doi:10.1098/rstb.2011.0155

    Article  CAS  PubMed  Google Scholar 

  • Mills FHJ, Renouf D (1986) Determination of the vibration sensitivity of harbor seal Phoca vitulina (L.) vibrissae. J Exp Mar Biol Ecol 100:3–9

    Article  Google Scholar 

  • Møhl B (1964) Preliminary studies on hearing in seals. Vidensk Medd Dansk Naturh Foren 127:283–294

    Google Scholar 

  • Møhl B (1968) Auditory sensitivity of the common seal in air and water. J Aud Res 8:27–38

    Google Scholar 

  • Moore PWB, Au WWL (1975) Underwater localization of pulsed pure tones by the California sea lion (Zalophus californianus). J Acoust Soc Am 58:721–727

    Article  CAS  PubMed  Google Scholar 

  • Nauen JC, Lauder GV (2002) Hydrodynamics of caudal fin locomotion by chub mackerel, Scomber japonicus (Scombridae). J Exp Biol 205:1709–1724

    PubMed  Google Scholar 

  • Popper AN, Fay RR (1993) Sound detection and processing by fish: critical review and major research questions (part 2 of 2). Brain Behav Evol 41:26–38

    Article  Google Scholar 

  • Renouf D (1979) Preliminary measurements of the sensitivity of the vibrissae of harbor seals (Phoca vitulina) to low frequency vibrations. J Zool 188:443–450

    Article  Google Scholar 

  • Rice FL, Mance A, Munger BL (1986) A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes. J Comp Neurol 252:154–174

    Article  CAS  PubMed  Google Scholar 

  • Ryg M, Lydersen C, Knutsen LO, Bjorge A, Smith TG, Oritsland NA (1993) Scaling of insulation in seals and whales. J Zool 230:193–206

    Article  Google Scholar 

  • Scholtyssek C, Kelber A, Dehnhardt G (2008) Brightness discrimination in the harbor seal (Phoca vitulina). Vis Res 48:96–103. http://dx.doi.org/10.1016/j.visres.2007.10.012

    Google Scholar 

  • Schulte-Pelkum N, Wieskotten S, Hanke W, Dehnhardt G, Mauck B (2007) Tracking of biogenic hydrodynamic trails in harbor seals (Phoca vitulina). J Exp Biol 210:781–787

    Article  CAS  PubMed  Google Scholar 

  • Standen EM, Lauder GV (2007) Hydrodynamic function of dorsal and anal fins in brook trout (Salvelinus fontinalis). J Exp Biol 210:325–339

    Article  CAS  PubMed  Google Scholar 

  • Standen EM, Hinch SG, Rand PS (2004) Influence of river speed on path selection by migrating adult sockeye salmon (Oncorhynchus nerka). Can J Fish Aquat Sci 61:905–912. doi:10.1139/F04-035

    Article  Google Scholar 

  • Stephens RJ, Beebe IJ, Poulter TC (1973) Innervation of the vibrissae of the California sea lion, Zalophus californianus. Anat Rec 176:421–442. doi:10.1002/ar.1091760406

    Article  CAS  PubMed  Google Scholar 

  • Terhune JM (1974) Directional hearing of a harbor seal in air and water. J Acoust Soc Am 56:1862–1865

    Article  CAS  PubMed  Google Scholar 

  • Tytell ED, Standen EM, Lauder GV (2008) Escaping Flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes. J Exp Biol 211:187–195

    Article  PubMed  Google Scholar 

  • Videler JJ, Weihs D (1982) Energetic advantages of burst-and-coast swimming of fish at high speeds. J Exp Biol 97:169–178

    CAS  PubMed  Google Scholar 

  • Wahlberg M, Westerberg H (2003) Sounds produced by herring (Clupea harengus) bubble release. Aquat Living Resour 16:271–275. http://dx.doi.org/10.1016/S0990-7440(03)00017-2

    Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. The Cranbrook Institute of Science, Bloomfield Hills. doi:10.5962/bhl.title.7369

  • Watkins WA, Wartzok D (1985) Sensory biophysics of marine mammals. Mar Mammal Sci 1:219–260. doi:10.1111/j.1748-7692.1985.tb00011.x

    Article  Google Scholar 

  • Watts P, Hansen S, Lavigne DM (1993) Models of heat loss by marine mammals: thermoregulation below the zone of irrelevance. J Theor Biol 163:505–525. doi:10.1006/jtbi.1993.1135

    Article  Google Scholar 

  • Weiffen M, Möller B, Mauck B, Dehnhardt G (2006) Effect of water turbidity on the visual acuity of harbor seals (Phoca vitulina). Vis Res 46:1777–1783

    Article  PubMed  Google Scholar 

  • Wieskotten S, Dehnhardt G, Mauck B, Miersch L, Hanke W (2010a) The impact of glide phases on the trackability of hydrodynamic trails in harbor seals (Phoca vitulina). J Exp Biol 213:3734–3740

    Article  CAS  PubMed  Google Scholar 

  • Wieskotten S, Dehnhardt G, Mauck B, Miersch L, Hanke W (2010b) Hydrodynamic determination of the moving direction of an artificial fin by a harbor seal (Phoca vitulina). J Exp Biol 213:2194–2200

    Article  CAS  PubMed  Google Scholar 

  • Wieskotten S, Mauck B, Miersch L, Dehnhardt G, Hanke W (2011) Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbor seal (Phoca vitulina). J Exp Biol 214:1922–1930

    Article  PubMed  Google Scholar 

  • Williams TM, Kooyman GL (1985) Swimming performance and hydrodynamic characteristics of harbor seals Phoca vitulina. Physiol Zool 58:576–589

    Google Scholar 

  • Wilson B, Batty RS, Dill LM (2004) Pacific and Atlantic herring produce burst pulse sounds. Proc R Soc London Ser B 7:95–97

    Article  Google Scholar 

  • Witte M, Hanke W, Wieskotten S, Miersch L, Brede M, Dehnhardt G, Leder A (2012) On the wake flow dynamics behind harbor seal vibrissae—a fluid mechanical explanation for an extraordinary capability. In: Tropea C, Bleckmann H (eds) Nature-inspired fluid mechanics, vol 119. Springer, Berlin, Heidelberg, pp 271–289. doi:10.1007/978-3-642-28302-4_17

  • Woolsey TA, Van Der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242. doi:10.1016/0006-8993(70)90079-x

    Article  CAS  PubMed  Google Scholar 

  • Worthy GAJ (1991) Insulation and thermal balance of fasting harp and gray seal pups. Comp Biochem Physiol A 100:845–851. doi:10.1016/0300-9629(91)90302-s

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Dehnhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dehnhardt, G., Hanke, W., Wieskotten, S., Krüger, Y., Miersch, L. (2014). Hydrodynamic Perception in Seals and Sea Lions. In: Bleckmann, H., Mogdans, J., Coombs, S. (eds) Flow Sensing in Air and Water. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41446-6_6

Download citation

Publish with us

Policies and ethics