Skip to main content

Patterning the Posterior Lateral Line in Teleosts: Evolution of Development

  • Chapter
  • First Online:
Flow Sensing in Air and Water

Abstract

The lateral line system of teleost fishes presents large variations of patterns and forms, usually thought of as adaptive. This raises the question of how divergent adult patterns are achieved, and how selective pressures have contributed to this divergence. Our understanding of the development of this sensory system has much improved over the past 10 years, mostly through work on the zebrafish. Because this progress is restricted to a single species, we cannot yet answer questions about the determinism of lateral line evolution, but we can at least propose plausible and testable hypotheses. Here we review the mechanisms that mediate the transition from embryonic to adult pattern in the zebrafish posterior lateral line system (PLL), and we show that the adult pattern is largely determined by developmental events that take place during early larval life. We also show that simple variations in the use of the same mechanisms account for the very different patterns observed in juvenile zebrafish and blue-fin tuna, and could potentially account for many or all of the patterns observed in other adult teleosts. We conclude that, in the case of the lateral line at least, large variations in pattern depend on minor changes in the deployment of conserved developmental programs, with uncertain adaptive value. We propose that organisms neurally adapt to whatever tools they are provided with by their own development, and use them as best as they can, thereby giving the impression that such tools were actually selected for.

Il n’est mouvement qui ne parle.

(There is no such thing as a movement that does not speak).

Michel de Montaigne, Livre II, Chap. XII.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandre D, Ghysen A (1999) Somatotopy of the lateral line projection in larval zebrafish. Proc Natl Acad Sci USA 96 13:7558–7562.

    Google Scholar 

  • Aman A, Piotrowski T (2008) Wnt/beta-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression. Dev Cell 15:749–761

    Article  CAS  PubMed  Google Scholar 

  • Aman A, Piotrowski T (2010) Cell migration during morphogenesis. Dev Biol 341:20–33

    Article  CAS  PubMed  Google Scholar 

  • Aman A, Nguyen M, Piotrowski T (2011) Wnt/beta-catenin dependent cell proliferation underlies segmented lateral line morphogenesis. Dev Biol 349:470–482

    Article  CAS  PubMed  Google Scholar 

  • Baker CV, Bronner-Fraser M (2001) Vertebrate cranial placodes I. Embryonic induction. Dev Biol 232:1–61

    Article  CAS  PubMed  Google Scholar 

  • Bate CM (1998) Making sense of behavior. Int J Dev Biol 42:507–509

    CAS  PubMed  Google Scholar 

  • Blaxter JHS, Fuiman LA (1989) Function of the free neuromasts of marine teleost larvae. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 481–499

    Chapter  Google Scholar 

  • Bleckmann H, Tittel G, Blübaum-Gronau E (1989) The lateral line system of surface-feeding fish, anatomy, physiology, and behavior. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 501–526

    Chapter  Google Scholar 

  • Boldajipour B, Mahabaleshwar H, Kardash E, Reichman-Fried M, Blaser H, Minina S, Wilson D, Xu Q, Raz E (2008) Control of chemokine-guided cell migration by ligand sequestration. Cell 132:463–473

    Article  CAS  PubMed  Google Scholar 

  • Chitnis AB, Nogare DD, Matsuda M (2012) Building the posterior lateral line system in zebrafish. Develop Neurobiol 72:234–255

    Article  Google Scholar 

  • Coombs S, Bleckmann H, Popper AN, Fay RR (2014) The lateral line system, vol 48, Springer handbook of auditory research. Springer, New York

    Google Scholar 

  • Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: phylogenetic, and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 553–593

    Chapter  Google Scholar 

  • Coombs S, Görner P, Münz H (1989) The mechanosensory lateral line: neurobiology and evolution. Springer, New York

    Book  Google Scholar 

  • Coombs S, Janssen J (1989) Peripheral processing by the lateral line system of the mottled sculpin (Cottus bairdi). In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 299–319

    Chapter  Google Scholar 

  • Coombs S, Montgomery JC (1994) Structural diversity in the lateral line system of antarctic fish: adaptive or non-adaptive? Sensornye Sistemy 8:42–52

    Google Scholar 

  • Coombs S, Montgomery JC (1999) The enigmatic lateral line system. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer, New York, pp 319–362

    Chapter  Google Scholar 

  • Dambly-Chaudière C, Cubedo N, Ghysen A (2007) Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1. BMC Dev Biol 7:23

    Article  PubMed Central  PubMed  Google Scholar 

  • David NB, Sapède D, Saint-Etienne L, Thisse C, Thisse B, Dambly-Chaudière C, Rosa F, Ghysen A (2002) Molecular basis of cell migration in the fish lateral line: role of the chemokine receptor CXCR4 and of its ligand, SDF1. Proc Natl Acad Sci USA 99:16297–16302

    Article  CAS  PubMed  Google Scholar 

  • Dijkgraaf S (1963) The functioning and significance of the lateral line organs. Biol Rev 38:51–105

    Article  CAS  PubMed  Google Scholar 

  • Doitsidou M, Reichman-Fried M, Stebler J, Köprunner M, Dörries J, Meyer D, Esguerra CV, Leung T, Raz E (2002) Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111:647–659

    Article  CAS  PubMed  Google Scholar 

  • Donà E, Barry JD, Valentin G, Quirin C, Khmelinskii A, Kunze A, Durdu S, Newton LR, Fernandez-Minan A, Huber W, Knop M, Gilmour D (2013) Directional tissue migration through a self-generated chemokine gradient. Nature 503:285–289

    Google Scholar 

  • Engeszer RE, Patterson LB, Rao AA, Parichy DM (2007) Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish 4:21–40

    Article  PubMed  Google Scholar 

  • Gamba L, Cubedo N, Lutfalla G, Ghysen A, Dambly-Chaudiere C (2010) Lef1 controls patterning and proliferation in the posterior lateral line system of zebrafish. Dev Dyn 239:3163–3171

    Google Scholar 

  • Ghysen A, Dambly-Chaudière C (2003) Le développement du système nerveux: de la mouche au poisson, du poisson à l’homme. médecine-Sciences 19:575–581

    Google Scholar 

  • Ghysen A, Dambly-Chaudière C (2004) Development of the zebrafish lateral line. Curr Opin Neurobiol 14:67–73

    Article  CAS  PubMed  Google Scholar 

  • Ghysen A, Dambly-Chaudière C (2007) The lateral line microcosmos. Genes Dev 21:2118–2130

    Article  CAS  PubMed  Google Scholar 

  • Ghysen A, Dambly-Chaudière C, Coves D, de la Gandara F, Ortega A (2012) Developmental origin of a major difference in sensory patterning between zebrafish and bluefin tuna. Evol Dev 14:204–211

    Google Scholar 

  • Grant KA, Raible DW, Piotrowski T (2005) Regulation of latent sensory hair cell precursors by glia in the zebrafish lateral line. Neuron 45:69–80

    Article  CAS  PubMed  Google Scholar 

  • Gompel N, Cubedo N, Thisse C, Thisse B, Dambly-Chaudière C, Ghysen A (2001) Pattern formation in the lateral line of zebrafish. Mech Dev 105:69–77

    Article  CAS  PubMed  Google Scholar 

  • Harrison RG (1904) Experimentelle Untersuchungen über die Entwicklung der Sinnesorgane der Seitenlinie bei den Amphibian. Arch Mikrosk Anat 63:35–149

    Article  Google Scholar 

  • Hurley IA, Mueller RL, Dunn KA, Schmidt EJ, Friedmann M, Ho RK, Prince VE, Yang Z, Thomas MG, Coates MI (2007) A new time-scale for ray-finned fish evolution. Proc R Soc B 274:489–498

    Article  CAS  PubMed  Google Scholar 

  • Janssen J, Coombs S, Hoekstra D, Platt C (1987) Anatomy and differential growth of the lateral line system in the mottled sculpin, Cottus bairdi (Scorpaeniformes: Cottidae). Brain Behav Evol 30:210–229

    CAS  PubMed  Google Scholar 

  • Kawamura G, Masuma S, Tezuka N, Koiuso M, Jinbo T, Namba K (2003) Morphogenesis of sense organs in the bluefin tuna Thunnus orientalis. In: Browman HI, Skitfesvik AB (eds) The big fish bang. Institute of Marine Research, Bergen, pp 123–135

    Google Scholar 

  • Knaut H, Werz C, Geisler R, Nüsslein-Volhard C (2003) Tübingen 2000 Screen Consortium. A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature 421:279–282

    Article  CAS  PubMed  Google Scholar 

  • Laguerre L, Soubiran F, Ghysen A, König N, Dambly-Chaudière C (2005) Cell proliferation in the developing lateral line system of zebrafish embryos. Dev Dyn 233:466–472

    Article  PubMed  Google Scholar 

  • Lecaudey V, Gilmour D (2006) Organizing moving groups during morphogenesis. Curr Opin Cell Biol 18:102–107

    Article  CAS  PubMed  Google Scholar 

  • Lecaudey V, Cakan-Akdogan G, Norton WH, Gilmour D (2008) Dynamic FGF signaling couples morphogenesis and migration in the zebrafish lateral line primordium. Development 135:2695–2705

    Article  CAS  PubMed  Google Scholar 

  • Ledent V (2002) Postembryonic development of the posterior lateral line in zebrafish. Development 129:597–604

    CAS  PubMed  Google Scholar 

  • Levin BA, Bolotovskiy AA, Levina MA (2012) Body size determines the number of scales in cyprinid fishes as inferred from hormonal manipulation of developmental rate. J Appl Ichtyol 28:393–397

    Article  Google Scholar 

  • Li Q, Shirabe K, Kuwada J (2004) Chemokine signaling regulates sensory cell migration in zebrafish. Dev Biol 269:123–136

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Schier H, Hudspeth AJ (2005) Supernumerary neuromasts in the posterior lateral line of zebrafish lacking peripheral glia. Proc Natl Acad Sci USA 102:1496–1501

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Schier H, Starr CJ, Kappler JA, Kollmar R, Hudspeth AJ (2004) Directional cell migration establishes the axes of planar polarity in the posterior lateral line organ of the zebrafish. Dev Cell 7:401–412

    Article  CAS  PubMed  Google Scholar 

  • Ma EY, Raible DW (2009) Signaling pathways regulating zebrafish lateral line development. Curr Biol 19:R381–R386

    Article  CAS  PubMed  Google Scholar 

  • McGraw HF, Drerup CM, Culbertson MD, Linbo T, Raible DW, Nechiporuk AV (2011) Lef1 is required for progenitor cell identity in the zebrafish lateral line primordium. Development 138:3921–3930

    Article  CAS  PubMed  Google Scholar 

  • Meier T, Chabaud F, Reichert H (1991) Homologous patterns in the embryonic development of the peripheral nervous system in the grasshopper Schistocerca gregaria and in the fly Drosophila melanogaster. Development 112:241–253

    CAS  PubMed  Google Scholar 

  • Metcalfe WK (1983) Anatomy and development of the zebrafish posterior lateral line system. Doctoral dissertation, University of Oregon, Eugene

    Google Scholar 

  • Metcalfe WK (1985) Sensory neuron growth cones comigrate with posterior lateral line primordium cells in zebrafish. J Comp Neurol 238:218–224

    Article  CAS  PubMed  Google Scholar 

  • Mukai Y, Yoshikawa H, Kobayashi H (1994) The relationship between the length of the cupulae of free neuromasts and feeding ability in larvae of the willow shiner Gnathopogon elongatus caerulescens (Teleostei, cyprinidae). J Exp Biol 197:399–403

    PubMed  Google Scholar 

  • Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus. J Comp Physiol A 157:555–568

    Article  Google Scholar 

  • Nakae M, Asai S, Sasaki K (2006) The lateral line system and its innervation in Champsodon snyderi (Champsodontidae): distribution of approximately 1000 neuromasts. Ichtyol Res 53:209–215

    Article  Google Scholar 

  • Nechiporuk A, Raible DW (2008) FGF-dependent mechanosensory organ patterning in zebrafish. Science 320:1774–1777

    Article  CAS  PubMed  Google Scholar 

  • Northcutt RG (1990) Ontogeny and phylogeny: a re-evaluation of conceptual relationships and some applications. Brain Behav Evol 36:116–140

    Article  CAS  PubMed  Google Scholar 

  • Nuñez VA, Sarrazin AF, Cubedo N, Allende ML, Dambly-Chaudière C, Ghysen A (2009) Postembryonic development of the posterior lateral line in the zebrafish. Evol Dev 11:391–404

    Article  PubMed  Google Scholar 

  • Olszewski J, Haehnel M, Taguchi M, Liao JC (2012) Zebrafish larvae exhibit rheotaxis and can escape a continuous suction source using their lateral line. PLoS ONE 7:e36661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parinov S, Kondrichin I, Korzh V, Emelyanov A (2004) Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev Dyn 231:449–459

    Article  CAS  PubMed  Google Scholar 

  • Pichon F, Ghysen A (2004) Evolution of posterior lateral line development in fish and amphibians. Evol Dev 3:187–193

    Article  Google Scholar 

  • Pujol-Martí J, Baudoin JP, Faucherre A, Kawakami K, López-Schier H (2010) Progressive neurogenesis defines lateralis somatotopy. Dev Dyn 239:1919–1930

    Article  PubMed  Google Scholar 

  • Sapède D, Gompel N, Dambly-Chaudière C, Ghysen A (2002) Cell migration in the postembryonic development of the fish lateral line. Development 129:605–615

    PubMed  Google Scholar 

  • Sarrazin AF, Nuñez VA, Sapède D, Tassin V, Dambly-Chaudière C, Ghysen A (2010) Origin and early development of the posterior lateral line system of zebrafish. J Neurosci 30:8234–8244

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Koshida S, Takeda H (2010) Single-cell analysis of somatotopic map formation in the zebrafish lateral line system. Dev Dyn 239:2058–2065

    Article  CAS  PubMed  Google Scholar 

  • Schlosser G (2006) Induction and specification of cranial placodes. Dev Biol 294:303–351

    Article  CAS  PubMed  Google Scholar 

  • Schmitz A, Bleckmann H, Mogdans J (2008) Organization of the superficial neuromast system in goldfish, Carassius auratus. J Morphol 269:751–761

    Article  PubMed  Google Scholar 

  • Spence R, Gerlach G, Lawrence C, Smith CH (2008) The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc 18:13–34

    Google Scholar 

  • Steinke D, Salzburger W, Meyer A (2006) Novel relationships among ten fish model species revealed based on a phylogenomic analysis using ESTs. J Mol Evol 62:772–784

    Article  CAS  PubMed  Google Scholar 

  • Stone LS (1922) Experiments on the development of cranial ganglia and the lateral line sense organs in Ambystoma punctatum. J Exp Zool 35:421–496

    Article  Google Scholar 

  • Stone LS (1933) The development of lateral line sense organs in amphibians observed in living and vital-stained preparations. J Comp Neur 57:507–540

    Article  Google Scholar 

  • Stone LS (1937) Further experimental studies of the development of lateral line sense organs in amphibians observed in living preparations. J Comp Neur 68:83–115

    Article  Google Scholar 

  • Valdivia LE, Young RM, Hawkins TA, Stickney HL, Cavodeassi F, Schwarz Q, Pullin LM, Villegas R, Moro E, Argenton F, Allende ML, Wilson SW (2011) Lef1-dependent Wnt/ß-catenin signalling drives the proliferative engine that maintains tissue homeostasis during lateral line development. Development 138:3931–3941

    Article  CAS  PubMed  Google Scholar 

  • Valentin G, Haas P, Gilmour D (2007) The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr Biol 17:1026–1031

    Article  CAS  PubMed  Google Scholar 

  • Van Netten SM, Kroese ABA (1989) Dynamic behavior and micromechanical properties of the cupula. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 247–263

    Chapter  Google Scholar 

  • Wada H, Hamaguchi S, Sakaizumi M (2008) Development of diverse lateral line patterns on the teleost caudal fin. Dev Dyn 237:2889–2902

    Article  CAS  PubMed  Google Scholar 

  • Wada H, Ghysen A, Satou C, Higashijima S, Kawakami K, Hamaguchi S, Sakaizumi M (2010) Dermal morphogenesis controls lateral line patterning during postembryonic development of teleost fish. Dev Biol 340:583–594

    Article  CAS  PubMed  Google Scholar 

  • Webb JF (1989a) Gross morphology and evolution of the mechanoreceptive lateral line system in teleost fishes. Brain Behav Evol 33:205–222

    Article  Google Scholar 

  • Webb JF (1989b) In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 79–97

    Google Scholar 

  • Webb JF (1989c) Developmental constraints and evolution of the lateral line system in teleost fishes. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 79–98

    Google Scholar 

  • Webb JF, Shirey JE (2003) Postembryonic development of the cranial lateral line canals and neuromasts in zebrafish. Dev Dyn 228:370–385

    Article  PubMed  Google Scholar 

  • Weihs D (1973) The mechanism of rapid starting of slender fish. Biorheology 10:343–350

    CAS  PubMed  Google Scholar 

  • Wöhl S, Schuster S (2007) The predictive start of hunting archer fish: a flexible and precise motor pattern performed with the kinematics of an escape C-start. J Exp Biol 210:311–324

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Sheryl Coombs for expert editorial assistance and thought-provoking comments on an early draft of this chapter, Hernan Lopez-Schier for excellent critical reading, Jackie Webb for careful editing, Ajay Chitnis for supportive comments, and Nicolas Cubedo for perfect fish handling and help over the past 16 years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Ghysen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ghysen, A., Wada, H., Dambly-Chaudière, C. (2014). Patterning the Posterior Lateral Line in Teleosts: Evolution of Development. In: Bleckmann, H., Mogdans, J., Coombs, S. (eds) Flow Sensing in Air and Water. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41446-6_12

Download citation

Publish with us

Policies and ethics