Skip to main content

The Wind Farm Layout Optimization Problem

  • Chapter
  • First Online:
Handbook of Wind Power Systems

Part of the book series: Energy Systems ((ENERGY))

Abstract

An important phase of a wind farm design is solving the Wind Farm Layout Optimization Problem (WFLOP), which consists in optimally positioning the turbines within the wind farm so that the wake effects are minimized and therefore the expected power production maximized. Although this problem has been receiving increasing attention from the scientific community, the existing approaches do not completely respond to the needs of a wind farm developer, mainly because they do not address construction and logistical issues. This chapter describes the WFLOP, gives an overview on the existing work, and discusses the challenges that may be overcome by future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Méchali M, Barthelemie R, Frandsen S, Jensen L, Rethoré P et al (2006) Wake effects at horns rev and their influence on energy production. In: European wind energy conference and exhibition, Athens

    Google Scholar 

  2. Aytun Ozturk U, Norman B (2004) Heuristic methods for wind energy conversion system positioning. Electr Power Syst Res 70:179–185

    Article  Google Scholar 

  3. Grady SA, Hussaini MY, Abdullah MM (2005) Placement of wind turbines using genetic algorithms. Renew Energy 30:259–270

    Article  Google Scholar 

  4. Hou-Sheng H (2007) Distributed Genetic Algorithm for optimization of wind farm annual profits. In: International conference on intelligent systems applications to power systems, Kaohsiung, Taiwan

    Google Scholar 

  5. Kusiak A, Song Z (2009) Design of wind farm layout for maximum wind energy capture. Renewable Energy 35:685–694

    Article  Google Scholar 

  6. Mosetti G, Poloni C, Diviacco D (1994) Optimization of wind turbine positioning in large wind farms by means of a Genetic algorithm. J Wind Eng Ind Aerody 51:105–116

    Article  Google Scholar 

  7. Rivas RA, Clausen J, Hansen KS et al (2009) Solving the turbine positioning problem for large offshore wind farms by simulated annealing. Wind Eng 33:287–297

    Article  Google Scholar 

  8. Şişbot S, Turgut Ö, Tunç M et al (2010). Optimal positioning of wind turbines on Gökçeada using multi-objective genetic algorithm. Wind Energy 13:297–306

    Google Scholar 

  9. Petersen EL, Mortensen NG, Landberg L et al (1998) Wind power meteorology. Part I: climate and turbulence. Wind Energy 1:25–45

    Article  Google Scholar 

  10. Kelley ND, Jonkman BJ, Scott GN, et al (2007) Comparing pulsed doppler LIDAR with SODAR and direct measurements for wind assessment. In: American Wind Energy Association wind power 2007 conference and exhibition. Los Angeles, California

    Google Scholar 

  11. Frehlich R, Kelley N (2010) Applications of scanning Doppler Lidar for the wind energy industry. The 90th American meteorological society annual meeting. Atlanta, GA

    Google Scholar 

  12. Ainslie JF (1988) Calculating the flow field in the wake of wind turbines. J Wind Eng Ind Aerodyn 27:213–224

    Article  Google Scholar 

  13. Vermeer LJ, Sørensen JN, Crespo A (2003) Wind turbine wake aerodynamics. Prog Aerosp Sci 39:467–510

    Article  Google Scholar 

  14. Wilcox DC (1998) Turbulence Modeling for CFD. La Canada, DCW Industries, CA

    Google Scholar 

  15. Jensen NO (1983) A note on wind generator interaction. Risø DTU national laboratory for sustainable energy

    Google Scholar 

  16. Katic I, Højstrup J, Jensen NO (1986) A simple model for cluster efficiency. In: Europe and Wind Energy Association conference and exhibition, Rome, Italy

    Google Scholar 

  17. Katic I (1993) Program PARK, calculation of wind turbine park performance. Release 1.3 ++, Risø National Laboratory, Rosklide

    Google Scholar 

  18. Barthelmie R, Larsen G, Pryor H et al (2004) ENDOW (efficient development of offshore wind farms): modelling wake and boundary layer interactions. Wind Energy 7:225–245

    Article  Google Scholar 

  19. Barthelmie R, Folkerts L, Larsen GC et al (2006) Comparison of wake model simulations with offshore wind turbine wake profiles measured by Sodar. J Atmos Oceanic Technol 23:888–901

    Article  Google Scholar 

  20. Lackner MA, Elkinton CN (2007) An analytical framework for offshore wind farm layout optimization. Wind Eng 31:17–31

    Article  Google Scholar 

  21. Goldberg DE (1989) Genetic algorithms in search optimization and machine learning. Addison-Wesley Longman Publishing Co. Inc, Boston

    MATH  Google Scholar 

  22. Brooks SP, Morgan BJ (1995) Optimization using simulated annealing. J R Stat Soc D (The Statistician) 44:241–257

    Google Scholar 

  23. Manwell JF, McGowan JG, Rogers AL (2002) Wind Energy Explained. Wiley, West Sussex

    Book  Google Scholar 

  24. Garcia A, Torres JL, Prieto E et al (1998) Fitting wind speed distributions: a case study. Sol Energy 62:139–144

    Article  Google Scholar 

  25. Donovan S (2005) Wind farm optimization. University of Auckland, New Zealand

    Google Scholar 

  26. Crespo A, Hernandez J (1996) Turbulence characteristics in wind-turbine wakes. J Wind Eng Ind Aerody 61:71–85

    Article  Google Scholar 

  27. Kelley, ND, Sutherland HJ (1997) Damage estimates from long-term structural analysis of a wind turbine in a U.S. wind farm environment. In: Prepared for the 1997 ASME Wind Energy Symposium, Reno, Nevada. NREL/CP-440-21672, Golden, CO: National Renewable Energy Laboratory. pp 12

    Google Scholar 

  28. Burton T, Sharpe D, Jenkins N et al (2001) Wind energy handbook. Wiley, New York

    Book  Google Scholar 

Download references

Acknowledgments

This work has been made possible thanks to the generosity of Mr. John Callies and a IBM Shared University Research (SUR) Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Samorani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Samorani, M. (2013). The Wind Farm Layout Optimization Problem. In: Pardalos, P., Rebennack, S., Pereira, M., Iliadis, N., Pappu, V. (eds) Handbook of Wind Power Systems. Energy Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41080-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41080-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41079-6

  • Online ISBN: 978-3-642-41080-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics