Skip to main content

Methods for Purification and Characterization of Microbial Phenazines

  • Chapter
  • First Online:
Microbial Phenazines

Abstract

Phenazines are nitro aromatic redox-active antibiotics produced under the control of quorum sensing mechanism by a diverse range of bacterial genera with various color intensities varies from blue, green, purple, yellow, red to even brown. Production of phenazine showed (1) taxonomic value when related to few genera, (2) functional role in environment and (3) bioactive potential with respect to structure; however due to poor structural understanding its correlation is still incomplete with diversity and bioactivity. Thus isolation and identification of phenazine antibiotic is highly desirable. Current chapter resolves the methodologies for various phenazines isolation as well as its identification through different spectroscopic and electrophoretic methods in different bacterial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

MS:

Mass spectrometry

EI-MS:

Electron impact mass spectroscopy

HRMS:

High-resolution mass spectrometry

FI MS:

Field ionization mass spectrometry

HRESIMS:

High resolution electron spray ionization mass spectroscopy

LRCIMS:

Low resolution chemical ionization mass spectrometry

HRCIMS:

High resolution chemical ionization mass spectrometry

HR-FAB-MS:

High resolution fast atom bombardment mass spectrum

DCI-MS:

Desorption-chemical ionization mass spectrometry

LC/MS:

Liquid chromatography/mass spectrometry

GC-MS:

Gas chromatography–mass spectrometry

References

  • Abken HJ, Tietze M, Brodersen J et al (1998) Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1. J Bacteriol 180:2027–2032

    PubMed  CAS  Google Scholar 

  • Allwooda JW, Goodacrea R (2010) An introduction to liquid chromatography–mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochem Anal 21:33–47

    Article  Google Scholar 

  • Angell S, Bench JB, Williams H et al (2006) Pyocyanin isolated from a marine microbial population: synergistic production between two distinct bacterial species and mode of action. Chem Biol 13:1349–1359

    Article  PubMed  CAS  Google Scholar 

  • Arbiser JL, Moschella SL (1995) Clofazimine: A review of its medical uses and mechanisms of action. J Am Acad Dermatol 32:241–247

    Article  PubMed  CAS  Google Scholar 

  • Aziz LM, Hamza SJ, Abdul-Rahman IA (2012) Isolation and characterization of phenazine produced from mutant Pseudomonas aeruginosa. Al- Anbar J Vet Sci 5:42–53

    Google Scholar 

  • Baront SS, Rowe JJ (1981) Antibiotic action of pyocyanin. Antimicrob Agents Chemother 20:814–820

    Article  Google Scholar 

  • Beckonert O, Keun HC, Ebbels TM et al (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703

    Article  PubMed  CAS  Google Scholar 

  • Brelles-Marino G, Bedmar EJ (2001) Detection, purification and characterization of quorum-sensing signal molecules in plant-associated bacteria. J Biotech 91:197–209

    Article  CAS  Google Scholar 

  • Brisbane PG, Janik LJ, Tate ME et al (1987) Revised Structure for the phenazine antibiotic from Pseudomonas fluorescens 2-79 (NRRL B-15132). Antimicrob Agents Chemother 31:1967–1971

    Article  PubMed  CAS  Google Scholar 

  • Burja AM, Banaigs EB, Abou-Mansour E et al (2001) Marine cyanobacteria-a prolific source of natural products. Tetrahedron 57:9347–9377

    Article  CAS  Google Scholar 

  • Chin-A-Woeng TC, Bloemberg G, Van der Bij A et al (1998) Biocontrol by phenazine-1-carboxamide producing Pseudomonas chlororaphis PCL1391 of Tomato Root Rot Caused by Fusarium oxysporum f.sp radicis-lycopersici. MPMI 11:1069–1077

    Article  CAS  Google Scholar 

  • Dakhama A, Noie J, Lavoie MC (1993) Isolation and identification of anti algal substances produced by Pseudomonas aeruginosa. J Appl Phycol 5:297–306

    Article  CAS  Google Scholar 

  • Delaney SM, Mavrodi DV, Bonsall RF et al (2001) phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84. J Bacteriol 183:318–327

    Article  PubMed  CAS  Google Scholar 

  • Denning GM, Iyer SS, Reszka KJ et al (2003) Phenazine-1-carboxylic acid, a secondary metabolite of Pseudomonas aeruginosa, alters expression of immunomodulatory proteins by human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 285:584–592

    Google Scholar 

  • Dharni S, Alam M, Kalani K et al (2012) Production, purification, and characterization of antifungal metabolite from Pseudomonas aeruginosa SD12, a new strain obtained from tannery waste polluted soil. J Microbiol Biotechn 22:674–683

    Article  CAS  Google Scholar 

  • Ding ZG, Li MG, Ren J et al (2011) Phenazinolins A-E: novel diphenazines from a tin mine tailings-derived Streptomyces species. Org Biomol Chem 9:2771–2776

    Article  PubMed  CAS  Google Scholar 

  • Fotso S, Santosa DA, Saraswati R et al (2010) Modified phenazines from an Indonesian Streptomyces sp. J Nat Prod 73:472–475

    Article  PubMed  CAS  Google Scholar 

  • Geiger A, Schierlein WK (1988) Metabolites of micro-organisms: Phenazines from Streptomyces antibioticus, strain TU 2706. J Antibiot 11:1542–1551

    Article  Google Scholar 

  • Gilpin ML, Fulston M, Payne D et al (1995) Isolation and structure determination of two novel Phenazines from a Streptomyces with inhibitory activity against metallo-enzymes, including metallo-β lactamase. J Antibiot 48:1081–1085

    Article  PubMed  CAS  Google Scholar 

  • Gräfe U, Heinze S, Schlegel B et al (2001) Disclosure of new and recurrent microbial metabolites by mass spectrometric methods. J Ind Microbiol Biotechnol 27:136–143

    Article  PubMed  Google Scholar 

  • Gurusiddaiah S, Weller DM, Sarkar A et al (1986) Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. Antimicrob Agents Chemother 29:488–495

    Article  PubMed  CAS  Google Scholar 

  • Haagen Y, Glück K, Fay K et al (2006) A gene cluster for prenylated naphthoquinone and prenylated phenazine biosynthesis in Streptomyces cinnamonensis DSM 1042. ChemBioChem 7:2016–2027

    Article  PubMed  CAS  Google Scholar 

  • Herbert RB, Holliman FG (1969) Pigments of Pseudomonas Species. Part II Structure of aeruginosin B. J Chem Soc C 19:2517–2520

    Article  Google Scholar 

  • Holliman FG (1969) Pigments of Pseudomonas Species. Part 1. Structure and synthesis of aeruginosin A. J Chem Soc C 19:2514–2516

    Article  Google Scholar 

  • Hosoya Y, Adachi H, Nakamura H et al (1996) The Structure of diphenazithionin, a novel antioxidant from Streptomyces griseus ISP 5236. Tetrahedron Lett 37:9227–9228

    Article  CAS  Google Scholar 

  • Huang L, Chen MM, Wang W et al (2011) Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72. Appl Microbiol Biotechnol 89:169–177

    Article  PubMed  CAS  Google Scholar 

  • Imamura M, Nishijima M, Takadera T et al (1997) New anticancer antibiotics pelagiomicins, produced by a new marine bacterium, Pelagiobacter varibalis. J Antibiot 50:8–12

    Article  PubMed  CAS  Google Scholar 

  • Ishida K, Welker M, Christiansen G et al (2009) Plasticity and evolution of Aeruginosin Biosynthesis in Cyanobacteria. Appl Environ Microbiol 75:2017–2026

    Article  PubMed  CAS  Google Scholar 

  • Jayatilake GS, Thornton MP, Leonard AC et al (1996) Metabolites from an antarctic sponge-associated bacterium, Pseudomonas aeruginosa. J Antibiot 59:293–296

    CAS  Google Scholar 

  • Kanner D, Gerber NN, Bartha R (1978) Pattern of phenazine pigment production by a strain of Pseudomonas aeruginosa. J Bacteriol 134:690–692

    PubMed  CAS  Google Scholar 

  • Kavitha K, Mathiyazhagan S, Sendhilvel V et al (2005) Broad spectrum action of phenazine against active and dormant structures of fungal pathogens and root knot nematode. Arch Phytopathol Pfl 38:69–76

    Article  CAS  Google Scholar 

  • Kerr JR, Taylor GW, Rutman A et al (1999) Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J Clin Pathol 52:385–387

    Article  PubMed  CAS  Google Scholar 

  • Kim WG, Ryoo IJ, Yun BS et al (1999) Phenazostatin C, a new diphenazine with neuronal cell protecting activity from Streptomyces sp. J Antibiot 52:758–761

    Article  PubMed  CAS  Google Scholar 

  • Kim WG, Ryoo IJ, Yun BS et al (1997) New diphenazines with neuronal cell protecting activity, phenazostatins A and B, produced by Streptomyces sp. J Antibiot 50:715–721

    Article  PubMed  CAS  Google Scholar 

  • Krastel P, Zeeck A (2002) Endophenazines A-D, New phenazine antibiotics from the athropod associated endosymbiont Streptomyces anulatus. J Antibiot 55:801–806

    Article  PubMed  CAS  Google Scholar 

  • Kumar RS, Ayyadurai N, Pandiaraja P et al (2005) Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J Appl Microbiol 98:145–154

    Article  PubMed  CAS  Google Scholar 

  • Kunigami T, Shin-Ya K, Furihata K et al (1998) A novel neuronal cell protecting substance, aestivophoenin C, produced by Streptomyces purpeofuscus. J Antibiot 51:880–882

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Moon SS, Hwang BK (2003) Isolation and in vitro and in vivo activity against Phytophthora capsici and Colletotrichum orbiculare of phenazine-1-carboxylic acid from Pseudomonas aeruginosa strain GC-B26. Pest Manag Sci 59:872–882

    Article  PubMed  CAS  Google Scholar 

  • Leflaive J, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biol 52:199–214

    Article  CAS  Google Scholar 

  • Levitch ME, Rietz P (1966) The isolation and characterization of 2-hydroxyphenazine from Pseudomonas aureofaciens. Biochemistry 5:689–692

    Article  PubMed  CAS  Google Scholar 

  • Li D, Wang F, Xiao X et al (2007) A new cytotoxic phenazine derivative from a deep sea bacterium Bacillus sp. Arch Pharmacal Res 30:552–555

    Article  Google Scholar 

  • Liu H, He Y, Jiang H et al (2007) Characterization of a phenazine-producing strain Pseudomonas chlororaphis GP72 with broad-spectrum antifungal activity from green pepper rhizosphere. Curr Microbiol 54:302–306

    Article  PubMed  CAS  Google Scholar 

  • Ma S, Chowdhury SK, Alton KB (2006) Application of mass spectrometry for metabolite identification. Curr Drug Metab 7:503–523

    Article  PubMed  CAS  Google Scholar 

  • Maskeya RP, Kocka I, Helmkeb E et al (2003) Isolation and structure determination of Phenazostatin D, a new phenazine from a marine actinomycete isolate Pseudonocardia sp. B6273. Z Naturforsch B 58:692–694

    Google Scholar 

  • Mattioda AL, Hudgins DM, Bauschlicher CW Jr et al (2005) Infrared spectroscopy of matrix-isolated polycyclic aromatic compounds and their ions. 7. Phenazine, a dual substituted polycyclic aromatic nitrogen heterocycle. Adv Space Res 36:156–165

    Article  CAS  Google Scholar 

  • Mavrodi DV, Bonsall RF, Delaney SM et al (2001) Functional analysis of Genes for Biosynthesis of Pyocyanin and Phenazine-1-Carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465

    Article  PubMed  CAS  Google Scholar 

  • McAlpine JB, Banskota AH, Charan RD et al (2008) Biosynthesis of diazepinomicin/ECO-4601, a Micromonospora secondary metabolite with a novel ring system. J Antibiot 71:1585–1590

    CAS  Google Scholar 

  • McDonald M, Wilkinson B, Van’t Land CW et al (1999) Biosynthesis of phenazine antibiotics in Streptomyces antibioticus: stereochemistry of methyl transfer from carbon-2 of acetate. J Am Chem Soc 211:5619–5624

    Article  Google Scholar 

  • Meyer J, Gruffaz C, Raharinosy V et al (2008) Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals 21:259–271

    Article  PubMed  CAS  Google Scholar 

  • Mitova MI, Lang G, Wiese J et al (2008) Subinhibitory concentrations of antibiotics induce phenazine production in a marine Streptomyces sp. J Nat Prod 71:824–827

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S (1958) Studies in structure of Griseolutein B, a Streptomyces antibiotic. I Characterization and degradation. Chem Pharm Bull 6:539–543

    Article  CAS  Google Scholar 

  • Namikoshi M, Rinehart KL (1996) Bioactive compounds produced by cyanobacteria. J Ind Microbiol Biotechnol 17:373–384

    Article  CAS  Google Scholar 

  • Nansathit A, Apipattarakul S, Phaosiri C et al (2009) Synthesis, isolation of phenazine derivatives and their antimicrobial activities. Walailak J Sci Tech 6:79–91

    Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–447

    Article  PubMed  CAS  Google Scholar 

  • Ohfuji K, Sato N, Hamada-Sato N et al (2004) Construction of a glucose sensor based on a screen-printed electrode and a novel mediator pyocyanin from Pseudomonas aeruginosa. Biosens Bioelectron 19:1237–1244

    Article  PubMed  CAS  Google Scholar 

  • Ohlendorf B, Schulz D, Erhard A et al (2012) Geranylphenazinediol, an acetylcholinesterase inhibitor produced by a Streptomyces species. J Nat Prod 75:1400–1404

    Article  PubMed  CAS  Google Scholar 

  • Ozdemir G, Karabay NU, Dalay CM et al (2004) Antibacterial activity of volatile components and various extracts of Spirulina platensis. Phytother Res 18:754–757

    Article  PubMed  CAS  Google Scholar 

  • Patel M, Hegde V, Horan AC et al (1984) A novel phenazine antifungal antibiotic, 1, 6-dihydroxy-2-chlorophenazine; Fermentation, isolation, structure and biological properties. J Antibiot 9:943–948

    Article  Google Scholar 

  • Pathirana C, Jensen PR, Dwight R et al (1992) Rare phenazine L-quinovose esters from a marine Actinomycetes. J Org Chem 57:740–742

    Article  CAS  Google Scholar 

  • Perneel M, Heyrman J, Adiobo A et al (2007) Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. J Appl Microbiol 103:1007–1020

    Article  PubMed  CAS  Google Scholar 

  • Pierson LS, Thomashow LS (1992) Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens. Mol Plant Microbe In 5:330–339

    Article  CAS  Google Scholar 

  • Pusecker K, Laatsch H, Helmke E et al (1997) Dihydrophencomycin methyl ester, a new phenazine derivative from a marine Streptomycete. J Antibiot 50:479–483

    Article  PubMed  CAS  Google Scholar 

  • Rada B, Lekstrom K, Damian S et al (2008) The Pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells. J Immunol 181:4883–4893

    PubMed  CAS  Google Scholar 

  • Rane MR, Sarode PD, Chaudhari BL, Chicholkar SB (2007a) Foliar application of Pseudomonas metabolite protects Capsicum annum (chilli) from fungal phytopathogens. Bionano Frontier 1:46–53

    Google Scholar 

  • Rane MR, Sarode PD, Chaudhari BL, Chincholkar SB (2007b) Detection, isolation and identification of phenazine-1-carboxylic acid produced by biocontrol strains of Pseudomonas aeruginosa. J Sci Ind Res 66:627–631

    CAS  Google Scholar 

  • Rane MR, Sarode PD, Chaudhari BL, Chincholkar SB (2008) Exploring Antagonistic Metabolites of Established Biocontrol Agent of Marine Origin. Appl Biochem Biotechnol 151:665–675

    Google Scholar 

  • Reo NV (2002) NMR-based metabolomics. Drug Chem Toxicol 25:375–382

    Article  PubMed  CAS  Google Scholar 

  • Saha S, Thavasi R, Jayalakshmi S (2008) Phenazine pigments from Pseudomonas aeruginosa and their application as antibacterial agent and food colourants. Res J Microbiol 3:122–128

    Article  CAS  Google Scholar 

  • Saleh O, Flinspach1 K, Westrich L et al (2012) Mutational analysis of a phenazine biosynthetic gene cluster in Streptomyces anulatus 9663. Beilstein J Org Chem 8: 501–513

    Google Scholar 

  • Samina M, Baig DN, Jamil F et al (2009) Characterization of a phenazine and hexanoyl homoserine lactone producing Pseudomonas aurantiaca strain PB-St2, isolated from sugarcane stem. J Microbiol Biotechnol 19:1688–1694

    Article  Google Scholar 

  • Saosoong K, Wongphathanakul W, Poasiri C et al (2009) Isolation and analysis of antibacterial substance produced from P. aeruginosa TISTR 781. KKU Sci J 37:163–172

    Google Scholar 

  • Sayed WE, Megeed MAE, Razik AB et al (2008) Isolation and identification of phenazine-1-carboxylic acid from different Pesudomonas isolates and its biological activity against Alternaria solani. Res J Agric Biol Sci 4:892–901

    Google Scholar 

  • Schlegel I, Doan NT, De Chazol N et al (1999) Antibiotic activity of new cyano-bacterial isolates from Australia and Asia against green algae and cyanobacteria. J Appl Phycol 10:471–479

    Article  Google Scholar 

  • Schneemann I, Wiese J, Kunz AL et al (2011) Genetic approach for the fast discovery of phenazine producing bacteria. Mar Drugs 9:772–789

    Article  PubMed  CAS  Google Scholar 

  • Seema D, Alam M, Kalani K et al (2012) Production, purification, and characterization of antifungal metabolite from Pseudomonas aeruginosa SD12, a new strain obtained from tannery waste polluted soil. J Microbiol Biotechn 22:674–683

    Article  Google Scholar 

  • Selin C, Habibian R, Poritsanos N et al (2010) Phenazines are not essential for Pseudomonas chlororaphis PA23 biocontrol of Sclerotinia sclerotiorum, but do play a role in biofilm formation. FEMS Microbiol Ecol 71:73–83

    Article  PubMed  CAS  Google Scholar 

  • Shanmugaiah V, Mathivanan N, Varghese B (2010) Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. J Appl Microbiol 108:703–711

    Article  PubMed  CAS  Google Scholar 

  • Shinya K, Furihata K, Hayakawa Y et al (1991) The structure of benthocyanin A. A new free radical scavenger of microbial origin. Tetrahedron Lett 32:943–946

    Article  CAS  Google Scholar 

  • Shinya K, Furihata K, Teshima Y et al (1993) Benthocyanins B and C, new free radical scavenbers from Streptomyces prunicolor. J Org Chem 58:4170–4172

    Article  CAS  Google Scholar 

  • Shinya K, Shimizu S, Kunigami T et al (1995) Neuronal cell protecting substances, aestivophoenins A and B, produced by Streptomyces purpeofuscus. J Antibiot 48:1378–1381

    Article  CAS  Google Scholar 

  • Shoji J, Sakazaki R, Nakai H et al (1988) Isolation of a new phenazine antibiotic, DOB-41 from Pseudomonas species. J Antibiot 5:589–594

    Article  Google Scholar 

  • Smedsgard J, Frisvad JC (1996) Using direct electrospray mass spectrometry in taxonomy and secondary metabolite profiling of crude fungal extracts. J Microbiol Methods 25:5–17

    Article  Google Scholar 

  • Smith GD, Doan NT (1999) Cyanobacterial metabolites with bioactivity against photosynthesis in cyanobacteria, algae and higher plants. J Appl Phycol 11:337–344

    Article  CAS  Google Scholar 

  • Smitka TA, Bunge RH, Wilton JH et al (1986) PD 116,152, a new phenazine antitumor antibiotic structure and antitumor activity. J Antibiot 39:800–803

    Article  PubMed  CAS  Google Scholar 

  • Soliev AB, Hosokawa K, Enomoto K (2011) Bioactive pigments from marine bacteria: applications and physiological roles. Evid Based Complement Alternat Med 1–17. Article ID 670349

    Google Scholar 

  • St-Onge R, Gadkar VJ, Arseneault T et al (2011) The ability of Pseudomonas sp. LBUM 223 to produce phenazine-1-carboxylic acid affects the growth of Streptomyces scabies, the expression of thaxtomin biosynthesis genes and the biological control potential against common scab of potato. FEMS Microbiol Ecol 75:173–183

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Takahashi I, Morimoto M et al (1986) DC-86-M, a novel antitumor antibiotic. II. Structure determination and biological activities. J Antibiot 39:624–628

    Article  PubMed  CAS  Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF et al (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56:908–912

    PubMed  CAS  Google Scholar 

  • Tulpan D, Léger S, Belliveau L et al (2011) MetaboHunter: an automatic approach for identification of metabolites from 1H-NMR spectra of complex mixtures. BMC Bioinf 12:1–22

    Google Scholar 

  • Upadhyay A, Srivastava S (2008) Characterization of a new isolate of Pseudomonas fluorescens strain Psd as a potential biocontrol agent. Lett Appl Microbiol 47:98–105

    Article  PubMed  CAS  Google Scholar 

  • Volk RB (2007) Studies on culture age versus exometabolite production in batch cultures of the cyanobacterium Nostoc imsulare. J Appl Phycol 19:491–495

    Article  CAS  Google Scholar 

  • Wang Y, Luo Q, Zhang X et al (2011) Isolation and purification of a modified phenazine, griseoluteic acid, produced by Streptomyces griseoluteus P510. Res Microbiol 162:311–319

    Article  PubMed  CAS  Google Scholar 

  • Want EJ, Cravatt BF, Siuzdak G (2005) The expanding role of mass spectrometry in metabolite profiling and characterization. ChemBioChem 6:1941–1951

    Article  PubMed  CAS  Google Scholar 

  • Watson D, Dermot JM, Wilson R et al (1986) Purification and structural analysis of pyocyanin and 1-hydroxyphenazine. Eur J Biochem 159:309–313

    Article  PubMed  CAS  Google Scholar 

  • Wilson R, Pitt T, Taylor G et al (1987) Pyocyanin and 1-hydroxyphenazine produced by Pseudomonas aeruginosa inhibit the beating of human respiratory cilia in vitro. J Clin Invest 79:221–229

    Article  PubMed  CAS  Google Scholar 

  • Zendah I, Riaz N, Hamdi N et al (2012) Chromophenazines from the terrestrial Streptomyces sp. Ank 315. J Nat Prod 75:2–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghraj S. Kadam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kadam, M.S., Patil, S.G., Dane, P.R., Pawar, M.K., Chincholkar, S.B. (2013). Methods for Purification and Characterization of Microbial Phenazines. In: Chincholkar, S., Thomashow, L. (eds) Microbial Phenazines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40573-0_6

Download citation

Publish with us

Policies and ethics