Skip to main content

On Resilient Graph Spanners

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8125))

Abstract

We introduce and investigate a new notion of resilience in graph spanners. Let S be a spanner of a graph G. Roughly speaking, we say that a spanner S is resilient if all its point-to-point distances are resilient to edge failures. Namely, whenever any edge in G fails, then as a consequence of this failure all distances do not degrade in S substantially more than in G (i.e., the relative distance increases in S are very close to those in the underlying graph G). In this paper we show that sparse resilient spanners exist, and that they can be computed efficiently.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Althofer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

    Article  MathSciNet  Google Scholar 

  3. Ausiello, G., Demetrescu, C., Franciosa, P.G., Italiano, G.F., Ribichini, A.: Graph spanners in the streaming model: An experimental study. Algorithmica 55(2), 346–374 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ausiello, G., Franciosa, P.G., Italiano, G.F.: Small stretch spanners on dynamic graphs. Journal of Graph Algorithms and Applications 10(2), 365–385 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ausiello, G., Franciosa, P.G., Italiano, G.F., Ribichini, A.: Computing graph spanner in small memory: fault-tolerance and streaming. Discrete Mathematics, Algorithms and Applications 2(4), 591–605 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baswana, S.: Dynamic algorithms for graph spanners. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 76–87. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: New constructions of (α, β)-spanners and purely additive spanners. In: Proc. of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), pp. 672–681 (2005)

    Google Scholar 

  8. Baswana, S., Khurana, S., Sarkar, S.: Fully dynamic randomized algorithms for graph spanners. ACM Trans. Algorithms 8(4), 35:1–35:51 (2012)

    Google Scholar 

  9. Bondy, J.A., Simonovits, M.: Cycles of even length in graphs. Journal of Combinatorial Theory, Series B 16(2), 97–105 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Braunschvig, G., Chechik, S., Peleg, D.: Fault tolerant additive spanners. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 206–214. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for general graphs. In: Proc. of 41st Annual ACM Symposium on Theory of Computing (STOC 2009), pp. 435–444 (2009)

    Google Scholar 

  12. Coppersmith, D., Elkin, M.: Sparse sourcewise and pairwise distance preservers. SIAM J. Discrete Math. 20(2), 463–501 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Demetrescu, C., Thorup, M., Chowdhury, R.A., Ramachandran, V.: Oracles for distances avoiding a failed node or link. SIAM J. Comput. 37(5), 1299–1318 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dinitz, M., Krauthgamer, R.: Fault-tolerant spanners: better and simpler. In: Proc. of the 30th Annual ACM Symposium on Principles of Distributed Computing (PODC 2011), pp. 169–178 (2011)

    Google Scholar 

  15. Elkin, M.: Streaming and fully dynamic centralized algorithms for constructing and maintaining sparse spanners. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 716–727. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Elkin, M., Peleg, D.: (1+epsilon, beta)-spanner constructions for general graphs. SIAM J. Comput. 33(3), 608–631 (2004)

    Google Scholar 

  17. Halperin, S., Zwick, U.: Linear time deterministic algorithm for computing spanners for unweighted graphs. Unpublished manuscript (1996)

    Google Scholar 

  18. Jacob, R., Koschützki, D., Lehmann, K.A., Peeters, L., Tenfelde-Podehl, D.: Algorithms for centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 62–82. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Kővári, T., Sós, V.T., Turán, P.: On a problem of K. Zarankiewicz. Colloquium Mathematicae 3(1), 50–57 (1954)

    Google Scholar 

  20. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality Indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 16–61. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Matoušek, J.: Lectures on Discrete Geometry. Springer (2002)

    Google Scholar 

  22. Pettie, S.: Low distortion spanners. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 78–89. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Zarankiewicz, K.: Problem p 101. Colloquium Mathematicae 2, 301 (1951)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ausiello, G., Franciosa, P.G., Italiano, G.F., Ribichini, A. (2013). On Resilient Graph Spanners. In: Bodlaender, H.L., Italiano, G.F. (eds) Algorithms – ESA 2013. ESA 2013. Lecture Notes in Computer Science, vol 8125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40450-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40450-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40449-8

  • Online ISBN: 978-3-642-40450-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics