Skip to main content

Abstract

Pyruvate carboxylase and pyruvate dehydrogenase deficiency are the most common disorders in pyruvate metabolism and almost always affect the central nervous system. The severity and the clinical phenotypes vary, with a range from overwhelming neonatal lactic acidosis and early death to milder presentations. In the differential diagnosis, there are always the respiratory chain defects (see Chap. 22 on mitochondrial disorders).

Diagnosis depends on biochemical analysis in plasma, urine, and CSF followed by enzymatic analysis in various tissues and confirmation by DNA analysis.

Pyruvate carboxylase (PC) deficiency constitutes a defect both in the Krebs cycle and in gluconeogenesis and generally presents with severe neurologic dysfunction and lactic acidosis more frequently than with fasting hypoglycemia. There are three different phenotypes with wide spectrum in severity.

Pyruvate dehydrogenase deficiency (PDH) is most common due to deficiency in the X-linked PDHE1alpha, but also defects in the other subunits of PDH complex have been described. The clinical picture is PDHE1alpha is usually different in boys and girls. Neonatal lactic acidosis and Leigh’s encephalopathy occur more frequently in boys; girls can present with severe seizures and microcephaly. The diagnosis is suspected when lactate and pyruvate are elevated, with a normal pyruvate to lactate ratio.

Further confirmation is done biochemically on fibroblasts, lymphocytes, or muscle, and the different genes can be investigated. A prenatal diagnosis is then possible. Ketogenic diet might help in some patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Barnerias C, Saudubray JM, Touati G et al (2010) Pyruvate dehydrogenase complex deficiency: four neurological phenotypes with differing pathogenesis. Dev Med Child Neurol 52(2):e1–e9

    PubMed  Google Scholar 

  • Brown RM, Head RA, Boubriak II et al (2004) Mutations in the gene for the E1β subunit: a novel cause of pyruvate dehydrogenase deficiency. Hum Genet 115:123–127

    Article  PubMed  Google Scholar 

  • Brown RM, Head R, Morris AA, Raiman JA et al (2006) Pyruvate dehydrogenase E3 binding protein (protein X) deficiency. Dev med Child Neurol 48:756–760

    Article  CAS  PubMed  Google Scholar 

  • De Meirleir L, Specola N, Seneca S, Lissens W (1998) Pyruvate dehydrogenase E1alpha deficiency in a family: different clinical presentation in two siblings. J Inherit Metab Dis 21:224–226

    Article  PubMed  Google Scholar 

  • Debray FG, Lambert M, Gagne R et al (2008) Pyruvate dehydrogenase deficiency presenting as intermittent isolated acute ataxia. Neuropediatrics 39:20–23

    Article  CAS  PubMed  Google Scholar 

  • Elpeleg ON, Ruitenbeek W, Jakobs C et al (1995) Congenital lacticacidemia caused by lipoamide dehydrogenase deficiency with favorable outcome. J Pediatr 126:72–74

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gazorla A, Rabier D, Touati G et al (2006) Pyruvate carboxylase deficiency: metabolic characteristics and new neurological aspects. Ann Neurol 59:121–127

    Article  Google Scholar 

  • Grafakou O, Oexle K, van den Heuvel L et al (2003) Leigh syndrome due to compound heterozygosity of dihydrolipoamide dehydrogenase gene mutations. Description of the first E3 splice site mutation. Eur J Pediatr 162:714–718

    Article  CAS  PubMed  Google Scholar 

  • Head R, Brown R, Zolkipli Z et al (2005) Clinical and genetic spectrum of pyruvate dehydrogenase deficiency: dihydrolipoamide acetyltransferase (E2) deficiency. Ann Neurol 58:234–241

    Article  CAS  PubMed  Google Scholar 

  • Hong YS, Korman SH, Lee J et al (2003) Identification of a common mutation (Gly194Cys) in both Arab Moslem and Ashkenazi Jewish patients with dihydrolipoamide dehydrogenase (E3) deficiency: possible beneficial effect of vitamin therapy. J Inherit Metab Dis 26:816–818

    Article  CAS  PubMed  Google Scholar 

  • Lissens W, De Meirleir L, Seneca S et al (2000) Mutations in the X-linked pyruvate dehydrogenase (E1) α sububit gene (PDHA1) in patients with a pyruvate dehydrogenase complex deficiency. Hum Mutat 15:209–219

    Article  CAS  PubMed  Google Scholar 

  • Maj M, Mackay N, Levandovskyi V et al (2005) Pyruvate dehydrogenase phosphatase deficiency: identification of the first mutation in two brothers and restoration of activity by protein complementation. J Clin Endocrinol Metab 90:4101–4107

    Article  CAS  PubMed  Google Scholar 

  • Michotte A, De Meirleir L, Lissens W et al (1993) Neuropathological findings of a patient with pyruvate dehydrogenase E1 alpha deficiency presenting as a cerebral lactic acidosis. Acta Neuropathol (Berl) 85:674–678

    Article  CAS  Google Scholar 

  • Monnot S, Serre V, Chadefaux-Vekemans B et al (2009) Structural insights on pathogenic effects of novel mutations causing pyruvate carboxylase deficiency. Hum Mutat 30:734–740

    Article  CAS  PubMed  Google Scholar 

  • Quintana E, Gort L, Busquets C et al (2009) Mutational study in the PDHA1 gene of 40 patients suspected of pyruvate dehydrogenase complex deficiency. Clin Gen 77:274–282

    Google Scholar 

  • Robinson BH, Taylor J, Sherwood WG (1980) The genetic heterogeneity of lactic acidosis: occurrence of recognizable inborn errors of metabolism in a pediatric population with lactic acidosis. Pediatr Res 14:956–962

    Article  CAS  PubMed  Google Scholar 

  • Robinson BH, Oei J, Sherwood WG et al (1984) The molecular basis for the two different clinical presentations of classical pyruvate carboxylase deficiency. Am J Hum Genet 36:283–294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson BH, MacKay N, Chun K, Ling M (1996) Disorders of pyruvate carboxylase and the pyruvate dehydrogenase complex. J Inherit Metab Dis 19:452–462

    Article  CAS  PubMed  Google Scholar 

  • Saudubray JM, Marsac C, Charpentier C et al (1976) Neonatal congenital lactic acidosis with pyruvate carboxylase deficiency in two siblings. Acta Paediatr Scand 65:717–724

    CAS  PubMed  Google Scholar 

  • Van Coster RN, Fernhoff PM, De Vivo DC (1991) Pyruvate carboxylase deficiency: a benign variant with normal development. Pediatr Res 30:1–4

    Article  PubMed  Google Scholar 

  • Willemsen M, Rodenburg RJT, Teszas A et al (2006) Females with PDHA1 gene mutations: a diagnostic challenge. Mitochondrion 6:155–159

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda De Meirleir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Meirleir, L. (2014). Pyruvate Carboxylase and Pyruvate Dehydrogenase Deficiency. In: Blau, N., Duran, M., Gibson, K., Dionisi Vici, C. (eds) Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40337-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40337-8_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40336-1

  • Online ISBN: 978-3-642-40337-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics