Skip to main content

Redundant and Critical Noncovalent Interactions in Protein Rigid Cluster Analysis

  • Chapter
  • First Online:
Discrete and Topological Models in Molecular Biology

Part of the book series: Natural Computing Series ((NCS))

Abstract

A protein’s fold is held together by weak noncovalent interactions, known to break and form during naturally occurring fluctuations. Rigidity analysis leverages connectivity information about these interactions, calculated from PDB structural data, and computes a decomposition of the molecule into groups of atoms, called rigid clusters, that tend to remain together during such local motions. A crucial question in the application of this technique is how robust the results of rigidity analysis are to small variations in the noncovalent network. If any particular interaction within a cluster were to break, would the cluster remain rigid, would it “shatter” into many smaller clusters, or would the flexibility increase but only negligibly? In this chapter, we overview the mathematical principles underlying rigidity analysis, and propose a method for classifying the interactions which are redundant or critical for a computed cluster decomposition. We also measure the change in cluster size upon the interaction’s removal, which we refer to as its criticality value. In addition, we propose a new method for assigning scores to the rigid clusters based on the fraction of interactions that are redundant. We demonstrate this classification scheme on a data set of multiple conformations of 16 proteins. We have found that typically the dominant rigid clusters do not contain highly critical interactions, yet, when such interactions exist, they tend to be concentrated around the active site. In our case studies, we have found that removal of these interactions results in functionally relevant changes in rigidity. We present our results on the redundancy and presence of critical interactions on benchmarking data sets, with case studies on adenylate kinase, dihydrofolate reductase, DNA polymerase β, HIV-1 protease, and cytochrome-c. We also provide survey results on a larger data set of 150 proteins. These methods have been implemented in the KINARI-Redundancy server, publicly available from the KINARI-Web site (http://kinari.cs.umass.edu).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Abyzov, R. Bjornson, M. Felipe, M. Gerstein, RigidFinder: a fast and sensitive method to detect rigid blocks in large macromolecular complexes. Proteins 78(2), 309–324 (2010)

    Article  Google Scholar 

  2. W.A. Beard, S.H. Wilson, Structure and mechanism of DNA polymerase beta. Chem. Rev. 106(2), 361–382 (2006)

    Article  Google Scholar 

  3. S. Bedard, L.C. Mayne, R.W. Peterson, A.J. Wand, S.W. Englander, The foldon substructure of staphylococcal nuclease. J. Mol. Biol. 376, 1142–1154 (2008)

    Article  Google Scholar 

  4. M.V. Chubynsky, B.M. Hespenheide, D.J. Jacobs, L.A. Kuhn, M. Lei, S. Menor, A.J. Rader, M.F. Thorpe, W. Whiteley, M.I. Zavodszky, Constraint theory applied to proteins. Nanotechnol. Res. J. 2, 61–72 (2008)

    Google Scholar 

  5. P. Clark, J. Grant, S. Monastra, F. Jagodzinski, I. Streinu, Periodic rigidity of protein crystal structures, in 2nd IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS’12), Las Vegas, Feb 2012

    Google Scholar 

  6. Q. Cui, I. Bahar (eds.), Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems (Chapman & Hall/CRC, Boca Raton, 2006)

    Google Scholar 

  7. Floppy Inclusions and Rigid Substructure Topography (FIRST) 6.2.1 User Guide, Oct 2009, available online http://flexweb.asu.edu

  8. N. Fox, I. Streinu, Towards accurate modeling of noncovalent interactions for protein rigidity analysis. BMC Bioinform. (2013, to appear)

    Google Scholar 

  9. N. Fox, F. Jagodzinski, Y. Li, I. Streinu, KINARI-Web: a server for protein rigidity analysis. Nucleic Acids Res. 39(Web Server Issue), W177–W183 (2011)

    Google Scholar 

  10. N. Fox, F. Jagodzinski, I. Streinu, Kinari-lib: a C++ library for pebble game rigidity analysis of mechanical models, in Minisymposium on Publicly Available Geometric/Topological Software, Chapel Hill, 17–19 Jun 2012

    Google Scholar 

  11. H. Gohlke, S. Radestock, Exploiting the link between protein rigidity and thermostability for data-driven protein engineering. Eng. Life Sci. 8, 507–522 (2008)

    Article  Google Scholar 

  12. H. Gohlke, M.F. Thorpe, A natural coarse graining for simulating large biomolecular motion. Biophys. J. 91(6), 2115–2120 (2006)

    Article  Google Scholar 

  13. H. Gohlke, L.A. Kuhn, D.A. Case, Change in protein flexibility upon complex formation: analysis of Ras-Raf using molecular dynamics and a molecular framework approach. Proteins 56(2), 322–337 (2004)

    Article  Google Scholar 

  14. L.C. Gonzalez, H. Wang, D.R. Livesay, D.J. Jacobs, Calculating ensemble averaged descriptions of protein rigidity without sampling. PLoS ONE 7(2), e29176 (2012)

    Google Scholar 

  15. K. Gunasekaran, A.T. Hagler, L.M. Gierasch, Sequence and structural analysis of cellular retinoic acid-binding proteins reveals a network of conserved hydrophobic interactions. Proteins 54(2), 179–194 (2004)

    Article  Google Scholar 

  16. S. Hayward, H.J.C. Berendsen, Systematic analysis of domain motions in proteins from conformational change: new results on citrate synthase and T4 lysozyme. Proteins Struct. Funct. Bioinform. 30, 144–154 (1998)

    Article  Google Scholar 

  17. B.M. Hespenheide, A.J. Rader, M.F. Thorpe, L.A. Kuhn, Identifying protein folding cores: observing the evolution of rigid and flexible regions during unfolding. J. Mol. Graph. Model. 21(3), 195–20 (2002)

    Article  Google Scholar 

  18. T.A. Holland, S. Veretnik, I.N. Shindyalov, P.E. Bourne, Partitioning protein structures into domains: why is it so difficult? J. Mol. Biol. 361(3), 562–590 (2006)

    Article  Google Scholar 

  19. D.J. Jacobs, Generic rigidity in three-dimensional bond-bending networks. J. Phys. A Math. Gen. 31(31), 6653–6668 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. D.J. Jacobs, A.J. Rader, M.F. Thorpe, L.A. Kuhn, Protein flexibility predictions using graph theory. Proteins 44, 150–165 (2001)

    Article  Google Scholar 

  21. F. Jagodzinski, P. Clark, T. Liu, J. Grant, S. Monastra, I. Streinu, Rigidity analysis of periodic crystal structures and protein biological assemblies. BMC Bioinform. (2013, to appear)

    Google Scholar 

  22. F. Jagodzinski, J. Hardy, I. Streinu, Using rigidity analysis to probe mutation-induced structural changes in proteins. J. Bioinform. Comput. Biol. 10(3), 1242010-1–1242010-17 (2012)

    Google Scholar 

  23. P.A. Karplus, G.E. Schulz, Prediction of chain flexibility in proteins. Naturwissenschaften 72, 212–213 (1985)

    Article  Google Scholar 

  24. T. Kortemme, A.V. Morozov, D. Baker, An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J. Mol. Biol. 326(4), 1239–1259 (2003)

    Article  Google Scholar 

  25. J.A. Kovacs, P. Chacon, R. Abagyan, Predictions of protein flexibility: first-order measures. Proteins 56(1), 661–668 (2004)

    Article  Google Scholar 

  26. M. Kurnikova, T. Mamanova, B.M. Hespenheide, R. Straub, Protein flexibility using constraints from molecular dynamics simulations. Phys. Biol. 2(4), S137–S147 (2005)

    Article  Google Scholar 

  27. A. Lee, I. Streinu, Pebble game algorithms and sparse graphs. Discret. Math. 308(8), 1425–1437 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. A. Lee, I. Streinu, L. Theran, Analyzing rigidity with pebble games, in Symposium on Computational Geometry, College Park (ACM, New York, 2008), pp. 226–227

    Google Scholar 

  29. H. Maity, M. Maity, M.M.G. Krishna, L. Mayne, S.W. Englander, Protein folding: the stepwise assembly of foldon units. PNAS 102(13), 4741–4746 (2005)

    Article  Google Scholar 

  30. S.L. Mayo, B.I. Dahiyat, D.B. Gordon, Automated design of the surface positions of protein helices. Protein Sci. 6(6), 1333–1337 (1997)

    Article  Google Scholar 

  31. I. McDonald, J.M. Thornton, Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238(5), 777–793 (1994). hplus reference

    Google Scholar 

  32. G.A. Petsko, D. Ringe, Protein Structure and Function (New Science Press, London, 2004)

    Google Scholar 

  33. A.J. Rader, B.M. Hespenheide, L.A. Kuhn, M.F. Thorpe, Protein unfolding: rigidity lost. PNAS 99, 3540–3545 (2002)

    Article  Google Scholar 

  34. T.S. Tay, Rigidity of multigraphs I: linking rigid bodies in n-space. J. Comb. Theory Ser. B 26, 95–112 (1984)

    Article  MathSciNet  Google Scholar 

  35. T.S. Tay, W. Whiteley, Recent advances in the generic rigidity of structures. Struct. Topol. 9, 31–38 (1984)

    MATH  MathSciNet  Google Scholar 

  36. M.F. Thorpe, B.M. Hespenheide, Y. Yang, L.A. Kuhn, Flexibility and critical hydrogen bonds in cytochrome c. Pac. Symp. Biocomput. 191–202 (2000)

    Google Scholar 

  37. M. Vihinen, E. Torkkila, P. Riikonen, Accuracy of protein flexibility predictions. Proteins 19(2), 141–149 (1994)

    Article  Google Scholar 

  38. S. Wells, S. Menor, B.M. Hespenheide, M.F. Thorpe, Constrained geometric simulation of diffusive motion in proteins. Phys. Biol. 2, S127–S136 (2005)

    Article  Google Scholar 

  39. S. Wells, J.E. Jimenez-Roldan, R.A. Romer, Comparative analysis of rigidity across protein families. Phys. Biol. 6(4), 046005 (2009)

    Google Scholar 

  40. J.M. Word, J.S. Richardson, D.C. Richardson, S.C. Lovell, Asparagine and glutamine: using hydrogen atom contacts in the choice of sidechain amide orientation. J. Mol. Biol. 285, 1735–1747 (1999)

    Article  Google Scholar 

  41. W. Wriggers, K. Schulten, Protein domain movements: detection of rigid domains and visualization of hinges in comparisons of atomic coordinates. Proteins Struct. Funct. Bioinform. 29(1), 1–14 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The studies described in this chapter were funded by the National Institute of General Medical Sciences grant DMS-0714934 as part of the Joint Program in Mathematical Biology supported by the Directorate for Mathematical and Physical Sciences of the National Science Foundation and the National Institute of General Medical Sciences of the National Institutes of Health, and by the Mathematical Challenges grants NSF CCF-1016988 and DARPA to IS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ileana Streinu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fox, N., Streinu, I. (2014). Redundant and Critical Noncovalent Interactions in Protein Rigid Cluster Analysis. In: Jonoska, N., Saito, M. (eds) Discrete and Topological Models in Molecular Biology. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40193-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40193-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40192-3

  • Online ISBN: 978-3-642-40193-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics