Skip to main content

Benefits Conferred on Plants

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 38))

Abstract

It has long been known that under suboptimal conditions mycorrhized plants fare better than their non-mycorrhized counterparts. This applies to desert truffles as well: when conditions are less than favorable, plants that enter into mycorrhizal associations with desert truffles exhibit higher levels of transpiration, stomatal conductance, and photosynthesis. Furthermore, studies of the gene expression of a fungal aquaporin in the mycorrhizal state revealed negative correlations with plant physiological parameters, suggesting that there is some form of communication between the symbionts. In particular, fine-tuning of plant aquaporin gene expression is responsive to water availability. Consistent with results reported for other mycorrhizal fungi, mineral acquisition was higher in plants mycorrhized by desert truffles, as was photosynthesis. Girdling led to noticeable reduction in carbon assimilation in non-mycorrhized plants but only to a slight reduction in mycorrhized ones. In addition, not only was general chlorophyll content higher in plants forming associations with desert truffles, but the ratio of chlorophyll b to chlorophyll a was higher too, leading to improved light harvesting under the lower irradiance conditions typical of mornings and afternoons. Correspondingly, the calculated activation energy for onset of photosynthesis was lower for desert truffle-mycorrhized plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aroca R, Bago A, Sutka M, Paz JA, Cano C, Amodeo G, Ruiz-Lozano JM (2009) Expression analysis of the first arbuscular mycorrhizal fungi aquaporin described reveals concerted gene expression between salt-stressed and nonstressed mycelium. Mol Plant Microbe Interact 22:1169–1178. doi:org/10.1094/MPMI-22-9-1169

    Article  PubMed  CAS  Google Scholar 

  • Auge RM (2001) Water reactions, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Auge RM (2012) Mycorrhizal books. http://mycorrhiza.ag.utk.edu/mbook.htm

  • Barazana G, Aroca R, Pas JA, Chaumont F, Martinez-Ballestra MC, Carvajal M, Ruiz-Lozanol JM (2012) Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot. doi:10.1093/aob/mcs007

    Google Scholar 

  • Bethlenfalvay GJ, Linderman RG (1992) Mycorrhizae in sustainable agriculture, vol 54, ASA Special Publication. Agronomy Society of America, Madison, WI, p 124. ISBN 0-89118-112-1

    Google Scholar 

  • Chalot M, Javelle A, Blaudez D, Lambilliote R, Cooke R, Sentenac H, Wipf D, Botton B (2002) An update on nutrient transport processes in ectomycorrhizas. Plant Soil 244:165–175

    Article  CAS  Google Scholar 

  • Chow WS, Melis A, Anderson JM (1990) Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proc Natl Acad Sci U S A 87:7502

    Article  PubMed  CAS  Google Scholar 

  • Davies FT Jr, Svenson SE, Cole JC, Phavaphutanon L, Duray SA, Olalde-Portugal O, Meier CE, Bo SH (1996) Non-nutritional stress acclimation of mycorrhizal woody plants exposed to drought. Tree Physiol 16:985–993

    Article  Google Scholar 

  • Dietz S, von Below J, Beitz E, Nehls U (2011) The aquaporin gene family of the ectomycorrhizal fungus Laccaria bicolor: lessons for symbiotic functions. New Phytol 190:927–940

    Article  PubMed  CAS  Google Scholar 

  • Douds DD, Janke RR, Peters SE (1993) VAM fungus spore populations and colonization of roots of maize and soybean under conventional and low-input sustainable agriculture. Agric Ecosyst Environ 43:325–335

    Article  Google Scholar 

  • Fan Y, Luan Y, An L, Yu K (2008) Arbuscular mycorrhizae formed by Penicillium pinophilum improve the growth, nutrient uptake and photosynthesis of strawberry with two inoculum-types. Biotechnol Lett 30:1489–1494

    Article  PubMed  CAS  Google Scholar 

  • Fini A, Frangi P, Amoroso G, Piatti R, Faoro M, Bellasio C, Ferrini F (2011) Effect of controlled inoculation with specific mycorrhizal fungi from the urban environment on growth and physiology of containerized shade tree species growing under different water regimes. Mycorrhiza 21:703–719

    Article  PubMed  Google Scholar 

  • Goldschmidt AE, Huber SC (1992) Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol 99:1443–1448, http://dx.doi.org/10.1104/pp.99.4.1443

    Article  PubMed  CAS  Google Scholar 

  • Haas H (2003) Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biotechnol 62:316–330

    Article  PubMed  CAS  Google Scholar 

  • Hacskaylo E (1971) Mycorrhizae. U.S. Government Printing Office, Washington, DC, p 255. ISBN 0-409-068

    Google Scholar 

  • Hahn M, Mendgen K (2001) Signal and nutrient exchange at biotrophic plant–fungus interfaces. Curr Opin Plant Biol 4:322–327

    Article  PubMed  CAS  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, New York

    Google Scholar 

  • Haselwandter K (2008) Structure and function of siderophores produced by mycorrhizal fungi. Mineral Magazine 77:61–64

    Article  Google Scholar 

  • Herold A (1980) Regulation of photosynthesis by sink activity—the missing link. New Phytol 86:131–144. doi:10.1111/j.1469-8137.1980.tb03184.x

    Article  CAS  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–654

    Article  PubMed  CAS  Google Scholar 

  • Kagan-Zur V, Raveh E, Lischinsky S, Roth-Bejerano N (1994) HelianthemumTerfezia association is enhanced by low iron in the growth medium. New Phytol 127:567–570

    Article  CAS  Google Scholar 

  • Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244

    Article  CAS  Google Scholar 

  • Marjanovic A, Uehlein N, Kaldenhoff R, Zwiazek JJ, Weiss M, Hampp R, Nehls U (2005) Aquaporins in poplar: what a difference a symbiont makes! Planta 222:258–268

    Article  PubMed  CAS  Google Scholar 

  • Melis A, Harvey G (1981) Regulation of photosystem stoichiometry chlorophyll a and chlorophyll b content and relation to chloroplast ultrastructure. Biochim Biophys Acta (BBA)—Bioenergetics 637:138–145

    Article  CAS  Google Scholar 

  • Morte A, Lovisolo C, Schubert A (2000) Effect of drought stress on growth and water relations of the mycorrhizal association Helianthemum almeriense-Terfezia claveryi. Mycorrhiza 10:115–119

    Article  CAS  Google Scholar 

  • Morte A, Navarro-Rodenas A, Nicolas E (2010) Physiological parameters of desert truffle Mycorrhizal Helianthemum almeriense plants cultivated in orchards under water deficit conditions. Symbiosis 52:133–139

    Article  Google Scholar 

  • Mushin TM, Zwiazek JJ (2002) Ectomycorrhizas increase apoplastic water transport and root hydraulic conductivity in Ulmus Americana seedlings. New Phytol 153:153–158

    Article  Google Scholar 

  • Navarro-Ródenas N, Pérez-Gilabert M, Torrente P, Morte A (2012a) The role of phosphorus in the ectendomycorrhiza continuum of desert truffle mycorrhizal plants. Mycorrhiza 22:565–575

    Article  PubMed  Google Scholar 

  • Navarro-Ródenas A, Ruíz-Lozano JM, Kaldenhoff R, Morte A (2012b) The aquaporin TcAQP1 of the desert truffle Terfezia claveryi is a membrane pore for water and CO2 transport. Mol Plant Microbe Interact 25:259–266

    Article  PubMed  Google Scholar 

  • Navarro-Rodenas A, Barzana G, Nicolas E, Carra A, Schubert A, Morte A (2013) Expression analysis of aquaporins from desert truffle mycorrhized symbiosis reveals a fine-tuned regulation under drought. Mol Plant Microbe Interact, http://dx.doi.org/10.1094/MPMI-07-12-0178-R

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  PubMed  CAS  Google Scholar 

  • Reid CPP, Kidd FA, Ekwebelam SA (1983) Nitrogen nutrition, photosynthesis and carbon allocation in ectomycorrhizal pine. Plant Soil 71:415–431

    Article  CAS  Google Scholar 

  • Romheld V (1987) Different strategies for iron acquisition in higher plants. Physiol Plant 70:231–234

    Article  Google Scholar 

  • Slama A, Gorai M, Fortas Z, Boudabous A, Neffati M (2012) Growth, root colonization and nutrient status of Helianthemum sessiliflorum Desf. inoculated with a desert truffle Terfezia boudieri Chatin. Saudi J Biol Sci 19:25–29

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London. ISBN 978-0-12-370526-6

    Google Scholar 

  • Turgeman T, Ben-Asher Y, Roth-Bejerano N, Kagan-Zur V, Kapulnik Y, Sitrit Y (2011) Mycorrhizal association between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum alters plant physiology and fitness to arid conditions. Mycorrhiza 21:623–630. doi:10.1007/s00572-011-0369-z

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varda Kagan-Zur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kagan-Zur, V., Turgeman, T., Roth-Bejerano, N., Morte, A., Sitrit, Y. (2014). Benefits Conferred on Plants. In: Kagan-Zur, V., Roth-Bejerano, N., Sitrit, Y., Morte, A. (eds) Desert Truffles. Soil Biology, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40096-4_7

Download citation

Publish with us

Policies and ethics