Skip to main content

Introduction to Cavity Enhanced Absorption Spectroscopy

  • Chapter
Book cover Cavity-Enhanced Spectroscopy and Sensing

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 179))

Abstract

In this introductory chapter we will begin with an historical outline of the development of cavity enhanced absorption methods, with just enough attention to the applications that either motivated them or became conceivable after their development. Given the number of publications in this domain, we will consider only the first demonstrations, and those works leading to substantial improvement or innovation in the state of the art.

Subsequently, rather than reviewing in detail all principal applications, we will provide a review of the many reviews that have already appeared, even quite recently, dealing preferentially with a specific cavity enhanced implementation or a specific domain of application.

Finally, we will provide wide but mostly intuitive foundations for approaching to cavity enhanced methods, by considering first the physics behind the (static) response of a cavity in the spectral domain, followed by a discussion of the physics of the (transient) coupling of different types of lasers to a cavity, going from the ideal tunable monochromatic wave to the realistic noisy continuous wave laser, to the pulsed nanosecond laser, and finally the broadband femtosecond laser combs. We will try to situate the most widespread cavity enhanced schemes along these detailed discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Charge Coupled Device, a linear or rectangular array of small detectors capable of converting photons into electrons which are accumulated into charge wells before readout

  2. 2.

    A shift applies also to the cavity resonances due to dispersion by the mirrors and in the intracavity medium, see Eq. (1.27).

  3. 3.

    See footnote 10.

  4. 4.

    …or the light group velocity at the given optical frequency, if intracavity dispersion effects are considered.

  5. 5.

    We neglect here phase factors associated to the complex coefficients r and t, which would introduce a tiny change of the effective cavity length. Likewise, we neglect the index of refraction n r of the sample, which makes the cavity length equal to n r L c. These effects have no importance here, but they have an impact on cavity dispersion (spectral dependence of FSR, considered later).

  6. 6.

    Inferior to 10 kHz/10 μs for a typical high finesse cavity, or about 0.1 s for tuning over one cavity FSR.

  7. 7.

    Any spectrograph will present an effective observation time inversely proportional to its resolution. An interesting case is the grating spectrograph, where the measurement time corresponds to the difference in delay of light paths reaching the observation plane after being diffracted at the opposite edges of the grating.

  8. 8.

    See also footnotes 4 and 5.

  9. 9.

    A drift of the other comb parameter (typically f 0) will only affect the match of the combs and the width of the transmitted peak at the passage through resonance, with no impact on the measurement as long as all the comb modes go through resonance with the cavity, even if at different times.

  10. 10.

    Virtually Imaged Phased Array: Basically, a tilted glass etalon which strongly disperses the frequencies of a light beam in the plane of the tilt, usually then coupled with a grating dispersing in the orthogonal direction [204].

References

  1. G.D. Boyd, J.P. Gordon, Bell Syst. Tech. J. 40(2), 489 (1961). http://www3.alcatel-lucent.com/bstj/vol40-1961/articles/bstj40-2-489.pdf

    Google Scholar 

  2. G.D. Boyd, H. Kogelnik, Bell Syst. Tech. J. 41(4), 1348 (1962). http://www3.alcatel-lucent.com/bstj/vol41-1962/articles/bstj41-4-1347.pdf

    Google Scholar 

  3. D.A. Jackson, Proc. R. Soc. A, Math. Phys. Eng. Sci. 263(1314), 289 (1961). doi:10.1098/rspa.1961.0161. http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1961.0161

    ADS  Google Scholar 

  4. P. Connes, J. Phys. Radium 19(3), 262 (1958). doi:10.1051/jphysrad:01958001903026200. http://www.edpsciences.org/10.1051/jphysrad:01958001903026200

    Google Scholar 

  5. A. Kastler, Appl. Opt. 1(1), 17 (1962). doi:10.1364/AO.1.000017

    ADS  Google Scholar 

  6. A.G. Fox, T. Li, Proc. IEEE 51(1), 80 (1963). doi:10.1109/PROC.1963.1663. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1443593

    Google Scholar 

  7. H. Kogelnik, T. Li, Proc. IEEE 54(10), 1312 (1966). doi:10.1109/PROC.1966.5119. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1447049

    Google Scholar 

  8. H. Kogelnik, T. Li, Appl. Opt. 5(10), 1550 (1966). doi:10.1364/AO.5.001550. http://www.opticsinfobase.org/abstract.cfm?URI=ao-5-10-1550

    ADS  Google Scholar 

  9. J.A. Arnaud, H. Kogelnik, Appl. Opt. 8(8), 1687 (1969). doi:10.1364/AO.8.001687. http://www.opticsinfobase.org/abstract.cfm?URI=ao-8-8-1687

    ADS  Google Scholar 

  10. J.P. Goldsborough, Appl. Opt. 3(2), 267 (1964). doi:10.1364/AO.3.000267

    ADS  Google Scholar 

  11. R.L. Fork, D.R. Herriott, H. Kogelnik, Appl. Opt. 3(12), 1471 (1964). doi:10.1364/AO.3.001471. http://www.opticsinfobase.org/abstract.cfm?URI=ao-3-12-1471

    ADS  Google Scholar 

  12. G. Rempe, R.J. Thompson, H.J. Kimble, R. Lalezari, Opt. Lett. 17(5), 363 (1992). http://www.ncbi.nlm.nih.gov/pubmed/19784329

    ADS  Google Scholar 

  13. R. Damaschini, Opt. Commun. 20(3), 441 (1977). doi:10.1016/0030-4018(77)90225-5. http://linkinghub.elsevier.com/retrieve/pii/0030401877902255

    ADS  Google Scholar 

  14. J.M. Herbelin, J.a. McKay, M.a. Kwok, R.H. Ueunten, D.S. Urevig, D.J. Spencer, D.J. Benard, Appl. Opt. 19(1), 144 (1980). http://www.ncbi.nlm.nih.gov/pubmed/20216808

    ADS  Google Scholar 

  15. R. Engeln, G. von Helden, G. Berden, G. Meijer, Chem. Phys. Lett. 262(1–2), 105 (1996). doi:10.1016/0009-2614(96)01048-2. http://linkinghub.elsevier.com/retrieve/pii/0009261496010482

    ADS  Google Scholar 

  16. J.H. van Helden, D.C. Schram, R. Engeln, Chem. Phys. Lett. 400(4–6), 320 (2004). doi:10.1016/j.cplett.2004.10.081. http://linkinghub.elsevier.com/retrieve/pii/S0009261404016768

    ADS  Google Scholar 

  17. D.Z. Anderson, J.C. Frisch, C.S. Masser, Appl. Opt. 23(8), 1238 (1984). http://www.ncbi.nlm.nih.gov/pubmed/18204709

    ADS  Google Scholar 

  18. A. Kastler, Nouv. Rev. Opt. 5(3), 133 (1974). http://iopscience.iop.org/0335-7368/5/3/301

    MathSciNet  Google Scholar 

  19. J.Y. Lee, J.W. Hahn, Appl. Phys. B, Lasers Opt. 79(3), 371 (2004). doi:10.1007/s00340-004-1550-2. http://www.springerlink.com/index/10.1007/s00340-004-1550-2

    Google Scholar 

  20. T.M. Crawford, in Southwest Conf. on Optics ’85, ed. by S.C. Stotlar. Proceedings of SPIE, vol. 0540 (1985), pp. 295–302. doi:10.1117/12.976129. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.976129

    Google Scholar 

  21. S.N. Jabr, T.M. Crawford, J. Opt. Soc. Am. A 1(12), 1329 (1984). http://adsabs.harvard.edu/abs/1984JOSAA...1.1329J

    ADS  Google Scholar 

  22. A. O’Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59(12), 2544 (1988). doi:10.1063/1.1139895. http://link.aip.org/link/RSINAK/v59/i12/p2544/s1&Agg=doi

    ADS  Google Scholar 

  23. D. Romanini, K.K. Lehmann, J. Chem. Phys. 99(9), 6287 (1993). doi:10.1063/1.465866. http://link.aip.org/link/JCPSA6/v99/i9/p6287/s1&Agg=doi

    ADS  Google Scholar 

  24. J.J. Scherer, D. Voelkel, D.J. Rakestraw, J.B. Paul, C.P. Collier, R.J. Saykally, A. O’Keefe, Chem. Phys. Lett. 245(2–3), 273 (1995). doi:10.1016/0009-2614(95)00969-B. http://linkinghub.elsevier.com/retrieve/pii/000926149500969B

    ADS  Google Scholar 

  25. J.J. Scherer, J.B. Paul, C.P. Collier, R.J. Saykally, J. Chem. Phys. 102(13), 5190 (1995). doi:10.1063/1.469244. http://link.aip.org/link/JCPSA6/v102/i13/p5190/s1&Agg=doi

    ADS  Google Scholar 

  26. T. Yu, M.C. Lin, J. Am. Chem. Soc. 115(10), 4371 (1993). doi:10.1021/ja00063a069 http://pubs.acs.org/doi/abs/10.1021/ja00063a069

    Google Scholar 

  27. G. Meijer, M.G.H. Boogaarts, R.T. Jongma, D.H. Parker, A.M. Wodtke, Chem. Phys. Lett. 217(1–2), 112 (1994). doi:10.1016/0009-2614(93)E1361-J. http://linkinghub.elsevier.com/retrieve/pii/0009261493E1361J

    ADS  Google Scholar 

  28. P. Zalicki, R.N. Zare, J. Chem. Phys. 102(7), 2708 (1995). doi:10.1063/1.468647. http://link.aip.org/link/JCPSA6/v102/i7/p2708/s1&Agg=doi

    ADS  Google Scholar 

  29. J.T. Hodges, J.P. Looney, R.D. van Zee, Appl. Opt. 35(21), 4112 (1996). doi:10.1364/AO.35.004112. http://www.opticsinfobase.org/abstract.cfm?URI=ao-35-21-4112, http://www.opticsinfobase.org/abstract.cfm?&id=46719

    ADS  Google Scholar 

  30. K.K. Lehmann, D. Romanini, J. Chem. Phys. 105(23), 10263 (1996). doi:10.1063/1.472955. http://link.aip.org/link/JCPSA6/v105/i23/p10263/s1&Agg=doi

    ADS  Google Scholar 

  31. J. Martin, B.A. Paldus, P. Zalicki, E.H. Wahl, T.G. Owano, J.S. Harris, C.H. Kruger, R.N. Zare, Chem. Phys. Lett. 258(1–2), 63 (1996). doi:10.1016/0009-2614(96)00609-4. http://linkinghub.elsevier.com/retrieve/pii/0009261496006094

    ADS  Google Scholar 

  32. J.T. Hodges, J.P. Looney, R.D. van Zee, J. Chem. Phys. 105(23), 10278 (1996). doi:10.1063/1.472956. http://link.aip.org/link/JCPSA6/v105/i23/p10278/s1&Agg=doi

    ADS  Google Scholar 

  33. R.D. van Zee, J.T. Hodges, J.P. Looney, Appl. Opt. 38(18), 3951 (1999). http://www.ncbi.nlm.nih.gov/pubmed/18320004

    ADS  Google Scholar 

  34. D. Romanini, A.A. Kachanov, N. Sadeghi, F. Stoeckel, Chem. Phys. Lett. 264(3–4), 316 (1997). doi:10.1016/S0009-2614(96)01351-6. http://linkinghub.elsevier.com/retrieve/pii/S0009261496013516

    ADS  Google Scholar 

  35. D. Romanini, A.A. Kachanov, F. Stoeckel, Chem. Phys. Lett. 270(5–6), 538 (1997). doi:10.1016/S0009-2614(97)00406-5. http://linkinghub.elsevier.com/retrieve/pii/S0009261497004065

    ADS  Google Scholar 

  36. D. Romanini, A.A. Kachanov, F. Stoeckel, Chem. Phys. Lett. 270(5–6), 546 (1997). doi:10.1016/S0009-2614(97)00407-7. http://linkinghub.elsevier.com/retrieve/pii/S0009261497004077

    ADS  Google Scholar 

  37. R.M. Curran, T.M. Crook, D.J. Zook, MRS Proc. 105, 175 (1987). doi:10.1557/PROC-105-175

    Google Scholar 

  38. B.A. Paldus, C.C. Harb, T.G. Spence, B. Willke, J. Xie, J.S. Harris, R.N. Zare, J. Appl. Phys. 83(8), 3991 (1998). doi:10.1063/1.367155. http://link.aip.org/link/JAPIAU/v83/i8/p3991/s1&Agg=doi

    ADS  Google Scholar 

  39. J.T. Hodges, D. Lisak, Appl. Phys. B, Lasers Opt. 85(2–3), 375 (2006). doi:10.1007/s00340-006-2411-y. http://www.springerlink.com/index/10.1007/s00340-006-2411-y

    ADS  Google Scholar 

  40. D. Lisak, J.T. Hodges, R. Ciurylo, Phys. Rev. A 73(1), 1 (2006). doi:10.1103/PhysRevA.73.012507. http://link.aps.org/doi/10.1103/PhysRevA.73.012507

    Google Scholar 

  41. G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, P. De Natale, Phys. Rev. Lett. 104(11), 1 (2010). doi:10.1103/PhysRevLett.104.110801. http://link.aps.org/doi/10.1103/PhysRevLett.104.110801

    Google Scholar 

  42. H. Huang, K.K. Lehmann, Opt. Express 15(14), 8745 (2007). doi:10.1364/OE.15.008745. http://www.ncbi.nlm.nih.gov/pubmed/19547210

    ADS  Google Scholar 

  43. H. Huang, K.K. Lehmann, Appl. Phys. B, Lasers Opt. 94(2), 355 (2009). doi:10.1007/s00340-008-3293-y. http://www.springerlink.com/index/10.1007/s00340-008-3293-y

    ADS  Google Scholar 

  44. H. Huang, K.K. Lehmann, Chem. Phys. Lett. 463(1–3), 246 (2008). doi:10.1016/j.cplett.2008.08.030. http://linkinghub.elsevier.com/retrieve/pii/S0009261408011081

    ADS  Google Scholar 

  45. H. Huang, K.K. Lehmann, Appl. Opt. 47(21), 3817 (2008). doi:10.1364/AO.47.003817. http://www.ncbi.nlm.nih.gov/pubmed/18641751

    ADS  Google Scholar 

  46. J. Courtois, J.T. Hodges, Opt. Lett. 37(16), 3354 (2012). doi:10.1364/OL.37.003354. http://www.opticsinfobase.org/abstract.cfm?URI=ol-37-16-3354

    ADS  Google Scholar 

  47. M. Hippler, M. Quack, Chem. Phys. Lett. 314(3–4), 273 (1999). doi:10.1016/S0009-2614(99)01071-4. http://linkinghub.elsevier.com/retrieve/pii/S0009261499010714

    ADS  Google Scholar 

  48. L. Biennier, D. Romanini, A.A. Kachanov, A. Campargue, B. Bussery-Honvault, R. Bacis, J. Chem. Phys. 112(14), 6309 (2000). doi:10.1063/1.481192. http://link.aip.org/link/JCPSA6/v112/i14/p6309/s1&Agg=doi

    ADS  Google Scholar 

  49. P. Macko, D. Romanini, S.N. Mikhailenko, O.V. Naumenko, S. Kassi, A. Jenouvrier, V.G. Tyuterev, A. Campargue, J. Mol. Spectrosc. 227(1), 90 (2004). doi:10.1016/j.jms.2004.05.020. http://linkinghub.elsevier.com/retrieve/pii/S002228520400178X

    ADS  Google Scholar 

  50. J.W. Hahn, Y.S. Yoo, J.Y. Lee, J.W. Kim, H.W. Lee, Appl. Opt. 38(9), 1859 (1999). http://www.ncbi.nlm.nih.gov/pubmed/18305817

    ADS  Google Scholar 

  51. K. An, C. Yang, R.R. Dasari, M.S. Feld, Opt. Lett. 20(9), 1068 (1995). doi:10.1364/OL.20.001068. http://www.ncbi.nlm.nih.gov/pubmed/19859426, http://www.opticsinfobase.org/abstract.cfm?URI=ol-20-9-1068

    ADS  Google Scholar 

  52. Y. He, B.J. Orr, Chem. Phys. Lett. 319(1–2), 131 (2000). doi:10.1016/S0009-2614(00)00107-X. http://linkinghub.elsevier.com/retrieve/pii/S000926140000107X

    ADS  Google Scholar 

  53. I. Debecker, A.K. Mohamed, D. Romanini, Opt. Express 13(8), 523 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=OPEX-13-8-2906

    Google Scholar 

  54. A. Cygan, D. Lisak, S. Wójtewicz, J. Domyslawska, J.T. Hodges, R. Trawinski, R. Ciurylo, Phys. Rev. A 85(2), 1 (2012). doi:10.1103/PhysRevA.85.022508

    Google Scholar 

  55. M.D. Levenson, B.A. Paldus, T.G. Spence, C.C. Harb, J.S.J. Harris, R.N. Zare, Chem. Phys. Lett. 290(4–6), 335 (1998). doi:10.1016/S0009-2614(98)00500-4. http://linkinghub.elsevier.com/retrieve/pii/S0009261498005004

    ADS  Google Scholar 

  56. Y. He, B.J. Orr, Chem. Phys. Lett. 335(3–4), 215 (2001). doi:10.1016/S0009-2614(01)00031-8. http://linkinghub.elsevier.com/retrieve/pii/S0009261401000318

    ADS  Google Scholar 

  57. S. Kassi, A. Campargue, J. Chem. Phys. 137(23), 234201 (2012). doi:10.1063/1.4769974. http://www.ncbi.nlm.nih.gov/pubmed/23267478

    ADS  Google Scholar 

  58. D. Romanini, P. Dupré, R. Jost, Vib. Spectrosc. 19(1), 93 (1999). doi:10.1016/S0924-2031(99)00018-1. http://linkinghub.elsevier.com/retrieve/pii/S0924203199000181

    Google Scholar 

  59. H. Huang, K.K. Lehmann, Appl. Opt. 49(8), 1378 (2010). doi:10.1364/AO.49.001378. http://www.opticsinfobase.org/abstract.cfm?URI=ao-49-8-1378

    Google Scholar 

  60. I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, G. Giusfredi, Phys. Rev. Lett. 107(27), 1 (2011). doi:10.1103/PhysRevLett.107.270802. http://link.aps.org/doi/10.1103/PhysRevLett.107.270802

    Google Scholar 

  61. L. Gianfrani, G. Gagliardi, M. van Burgel, E.R.T. Kerstel, Opt. Express 11(13), 1566 (2003)

    ADS  Google Scholar 

  62. G. Totschnig, D.S. Baer, J. Wang, Appl. Opt. 39(12), 2009 (2000). http://www.opticsinfobase.org/abstract.cfm?id=60847

    ADS  Google Scholar 

  63. R. Engeln, G. Berden, R. Peeters, G. Meijer, Rev. Sci. Instrum. 69(11), 3763 (1998). doi:10.1063/1.1149176. http://link.aip.org/link/RSINAK/v69/i11/p3763/s1&Agg=doi

    ADS  Google Scholar 

  64. A. O’Keefe, J.J. Scherer, J.B. Paul, Chem. Phys. Lett. 307(5–6), 343 (1999). doi:10.1016/S0009-2614(99)00547-3. http://linkinghub.elsevier.com/retrieve/pii/S0009261499005473

    ADS  Google Scholar 

  65. J.B. Paul, L. Lapson, J.G. Anderson, Appl. Opt. 40(27), 4904 (2001). http://www.ncbi.nlm.nih.gov/pubmed/18360533

    ADS  Google Scholar 

  66. D.S. Baer, J.B. Paul, M. Gupta, A. O’Keefe, Appl. Phys. B, Lasers Opt. 75(2–3), 261 (2002). doi:10.1007/s00340-002-0971-z. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00340-002-0971-z

    ADS  Google Scholar 

  67. G.S. Engel, W.S. Drisdell, F.N. Keutsch, E.J. Moyer, J.G. Anderson, Appl. Opt. 45(36), 9221 (2006). http://www.ncbi.nlm.nih.gov/pubmed/17151763newsensitivitylimitsforabsorptionmeasurementsinpassiveopticalcavities.pdf

    ADS  Google Scholar 

  68. J. Morville, M. Chenevier, A.A. Kachanov, D. Romanini, in Proceedings of SPIE, vol. 4485, ed. by A.M. Larar, M.G. Mlynczak (2002), pp. 236–243. doi:10.1117/12.454256

    Google Scholar 

  69. J. Morville, D. Romanini, A.A. Kachanov, M. Chenevier, Appl. Phys. B, Lasers Opt. 78(3–4), 465 (2004). doi:10.1007/s00340-003-1363-8. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00340-003-1363-8

    ADS  Google Scholar 

  70. J. Morville, S. Kassi, M. Chenevier, D. Romanini, Appl. Phys. B, Lasers Opt. 80(8), 1027 (2005). doi:10.1007/s00340-005-1828-z. http://www.springerlink.com/index/10.1007/s00340-005-1828-z

    ADS  Google Scholar 

  71. D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, H.J. Jost, Appl. Phys. B, Lasers Opt. 83(4), 659 (2006). doi:10.1007/s00340-006-2177-2. http://www.springerlink.com/index/10.1007/s00340-006-2177-2

    ADS  Google Scholar 

  72. S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, D. Romanini, Opt. Express 14(23), 11442 (2006). doi:10.1364/OE.14.011442

    ADS  Google Scholar 

  73. I. Ventrillard, T. Gonthiez, C. Clerici, D. Romanini, J. Biomed. Opt. 14(6), 64026 (2009). doi:10.1117/1.3269677. http://www.ncbi.nlm.nih.gov/pubmed/20059264

    Google Scholar 

  74. E.R.T. Kerstel, R.Q. Iannone, M. Chenevier, S. Kassi, H.J. Jost, D. Romanini, Appl. Phys. B, Lasers Opt. 85(2–3), 397 (2006). doi:10.1007/s00340-006-2356-1. http://www.springerlink.com/index/10.1007/s00340-006-2356-1

    ADS  Google Scholar 

  75. T.J.A. Butler, D. Mellon, J. Kim, J. Litman, A.J. Orr-Ewing, J. Phys. Chem. A 113(16), 3963 (2009). doi:10.1021/jp810310b

    Google Scholar 

  76. V. Motto-Ros, J. Morville, P. Rairoux, Appl. Phys. B, Lasers Opt. 87(3), 531 (2007). doi:10.1007/s00340-007-2618-6. http://www.springerlink.com/index/10.1007/s00340-007-2618-6

    ADS  Google Scholar 

  77. V. Motto-Ros, M. Durand, J. Morville, Appl. Phys. B, Lasers Opt. 91(1), 203 (2008). doi:10.1007/s00340-008-2950-5. http://www.springerlink.com/index/10.1007/s00340-008-2950-5

    ADS  Google Scholar 

  78. D.J. Hamilton, M.G.D. Nix, S.G. Baran, G. Hancock, A.J. Orr-Ewing, Appl. Phys. B, Lasers Opt. 100(2), 233 (2009). doi:10.1007/s00340-009-3811-6. http://www.springerlink.com/index/10.1007/s00340-009-3811-6

    ADS  Google Scholar 

  79. M. Hippler, C. Mohr, K.A. Keen, E.D. McNaghten, J. Chem. Phys. 133(4), 44308 (2010). doi:10.1063/1.3461061. http://www.ncbi.nlm.nih.gov/pubmed/20687651

    Google Scholar 

  80. M. Durand, J. Morville, D. Romanini, Phys. Rev. A 82(3), 031803(R) (2010). doi:10.1103/PhysRevA.82.031803. http://link.aps.org/doi/10.1103/PhysRevA.82.031803

    ADS  Google Scholar 

  81. G. Maisons, P. Gorrotxategi Carbajo, M. Carras, D. Romanini, Opt. Lett. 35(21), 3607 (2010). doi:10.1364/OL.35.003607

    ADS  Google Scholar 

  82. D.J. Hamilton, A.J. Orr-Ewing, Appl. Phys. B, Lasers Opt. 102(4), 879 (2010). doi:10.1007/s00340-010-4259-4. http://www.springerlink.com/index/10.1007/s00340-010-4259-4

    ADS  Google Scholar 

  83. J. Ye, L.S. Ma, J.L. Hall, J. Opt. Soc. Am. B 15(1), 6 (1998). http://www.opticsinfobase.org/abstract.cfm?id=35318

    ADS  Google Scholar 

  84. N.J. van Leeuwen, A.C. Wilson, J. Opt. Soc. Am. B 21(10), 1713 (2004). doi:10.1364/JOSAB.21.001713. http://www.opticsinfobase.org/abstract.cfm?URI=JOSAB-21-10-1713

    ADS  Google Scholar 

  85. M.S. Taubman, T.L. Myers, B.D. Cannon, R.M. Williams, Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 60(14), 3457 (2004). doi:10.1016/j.saa.2003.12.057. http://www.ncbi.nlm.nih.gov/pubmed/15561632

    ADS  Google Scholar 

  86. B.M. Siller, M.W. Porambo, A.A. Mills, B.J. McCall, Opt. Express 19(24), 24822 (2011). http://www.ncbi.nlm.nih.gov/pubmed/22109511

    ADS  Google Scholar 

  87. F.M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, O. Axner, Opt. Express 15(17), 10822 (2007). doi:10.1364/OE.15.010822

    ADS  Google Scholar 

  88. P. Ehlers, I. Silander, J. Wang, O. Axner, J. Opt. Soc. Am. B 29(6), 1305 (2012). doi:10.1364/JOSAB.29.001305. http://www.opticsinfobase.org/abstract.cfm?URI=josab-29-6-1305

    Google Scholar 

  89. P.K. Dasgupta, J.S. Rhee, Anal. Chem. 59, 783 (1987). http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract, http://pubs.acs.org/doi/abs/10.1021/ac00132a022

    Google Scholar 

  90. J.J. Scherer, J.B. Paul, H. Jiao, A. O’Keefe, Appl. Opt. 40(36), 6725 (2001). http://www.ncbi.nlm.nih.gov/pubmed/18364983

    ADS  Google Scholar 

  91. S.M. Ball, I.M. Povey, E.G. Norton, R.L. Jones, Chem. Phys. Lett. 342(1–2), 113 (2001). doi:10.1016/S0009-2614(01)00573-5. http://linkinghub.elsevier.com/retrieve/pii/S0009261401005735

    ADS  Google Scholar 

  92. S.E. Fiedler, A. Hese, A.A. Ruth, Chem. Phys. Lett. 371(3–4), 284 (2003). doi:10.1016/S0009-2614(03)00263-X. http://linkinghub.elsevier.com/retrieve/pii/S000926140300263X

    ADS  Google Scholar 

  93. S.M. Ball, J.M. Langridge, R.L. Jones, Chem. Phys. Lett. 398(1–3), 68 (2004). doi:10.1016/j.cplett.2004.08.144. http://linkinghub.elsevier.com/retrieve/pii/S0009261404014009

    ADS  Google Scholar 

  94. P.S. Johnston, K.K. Lehmann, Opt. Express 16(19), 15013 (2008). http://www.ncbi.nlm.nih.gov/pubmed/18795038

    ADS  Google Scholar 

  95. S.E. Fiedler, A. Hese, A.A. Ruth, Rev. Sci. Instrum. 76(2), 23107 (2005). doi:10.1063/1.1841872. http://link.aip.org/link/RSINAK/v76/i2/p023107/s1&Agg=doi

    Google Scholar 

  96. G.A. Marcus, H.A. Schwettman, Appl. Opt. 41(24), 5167 (2002). doi:10.1364/AO.41.005167. http://www.opticsinfobase.org/abstract.cfm?URI=ao-41-24-5167

    ADS  Google Scholar 

  97. N.R. Newbury, I. Coddington, W.C. Swann, Opt. Express 18(8), 7929 (2010). http://www.ncbi.nlm.nih.gov/pubmed/20588636

    Google Scholar 

  98. R. Grilli, G. Méjean, C. Abd Alrahman, I. Ventrillard, S. Kassi, D. Romanini, Phys. Rev. A 85(5), 1 (2012). doi:10.1103/PhysRevA.85.051804. http://link.aps.org/doi/10.1103/PhysRevA.85.051804

    Google Scholar 

  99. H. Moosmüller, Appl. Opt. 37(34), 8140 (1998). doi:10.1364/AO.37.008140. http://www.opticsinfobase.org/abstract.cfm?URI=ao-37-34-8140

    ADS  Google Scholar 

  100. G. Engel, W.B. Yan, J. Dudek, K.K. Lehmann, P. Rabinowitz, in Laser Spectroscopy XIV International Conference, ed. by R. Blatt, J. Eschner, D. Leibfried, F. Schmidt-Kaler (World Scientific, Singapore, 1999), pp. 314–315

    Google Scholar 

  101. K.K. Lehmann, High-finesse optical resonator for cavity ring-down spectroscopy based upon Brewster’s angle prism retroreflectors (1999). http://www.boliven.com/patent/US5973864

  102. A.C.R. Pipino, J.W. Hudgens, R.E. Huie, Rev. Sci. Instrum. 68, 2978 (1997). doi:10.1063/1.1148230

    ADS  Google Scholar 

  103. T. Udem, J. Reichert, R. Holzwarth, T.W. Hansch, Phys. Rev. Lett. 82(18), 3568 (1999). doi:10.1103/PhysRevLett.82.3568. http://link.aps.org/doi/10.1103/PhysRevLett.82.3568

    ADS  Google Scholar 

  104. E.R. Crosson, P. Haar, G.A. Marcus, H.A. Schwettman, B.A. Paldus, T.G. Spence, R.N. Zare, Rev. Sci. Instrum. 70(1), 4 (1999). doi:10.1063/1.1149533. http://link.aip.org/link/RSINAK/v70/i1/p4/s1&Agg=doi

    ADS  Google Scholar 

  105. T. Gherman, D. Romanini, Opt. Express 10(19), 1033 (2002). doi:10.1364/OE.10.001033

    ADS  Google Scholar 

  106. T. Gherman, E. Eslami, D. Romanini, S. Kassi, J.C. Vial, N. Sadeghi, J. Phys. D, Appl. Phys. 37(17), 2408 (2004). doi:10.1088/0022-3727/37/17/011. http://stacks.iop.org/0022-3727/37/i=17/a=011?key=crossref.762430055a776caaec8cfaa62362d3df

    ADS  Google Scholar 

  107. T. Gherman, S. Kassi, A. Campargue, D. Romanini, Chem. Phys. Lett. 383(3–4), 353 (2004). doi:10.1016/j.cplett.2003.10.148. http://linkinghub.elsevier.com/retrieve/pii/S0009261403019766

    ADS  Google Scholar 

  108. M.J. Thorpe, K.D. Moll, R. Jason Jones, B. Safdi, J. Ye, Science 311(5767), 1595 (2006). doi:10.1126/science.1123921. http://www.ncbi.nlm.nih.gov/pubmed/16543457

    ADS  Google Scholar 

  109. M.J. Thorpe, D. Balslev-Clausen, M.S. Kirchner, J. Ye, Opt. Express 16(4), 2387 (2008). doi:10.1364/OE.16.002387

    ADS  Google Scholar 

  110. G. Méjean, R. Grilli, C. Abd Alrahman, I. Ventrillard, S. Kassi, D. Romanini, Appl. Phys. Lett. 100(25), 251110 (2012). doi:10.1063/1.4726190. http://link.aip.org/link/APPLAB/v100/i25/p251110/s1&Agg=doi

    ADS  Google Scholar 

  111. R. Grilli, M. Legrand, A. Kukui, G. Méjean, S. Preunkert, D. Romanini, Geophys. Res. Lett. 40 (2013). doi:10.1002/grl.50154

  112. C. Gohle, B. Stein, A. Schliesser, T. Udem, T.W. Hansch, Phys. Rev. Lett. 99(26), 1 (2007). doi:10.1103/PhysRevLett.99.263902. http://link.aps.org/doi/10.1103/PhysRevLett.99.263902

    Google Scholar 

  113. M.J. Thorpe, J. Ye, Appl. Phys. B, Lasers Opt. 91(3–4), 397 (2008). doi:10.1007/s00340-008-3019-1. http://www.springerlink.com/index/10.1007/s00340-008-3019-1

    ADS  Google Scholar 

  114. S. Schiller, Opt. Lett. 27(9), 766 (2002). doi:10.1364/OL.27.000766

    ADS  Google Scholar 

  115. F. Keilmann, C. Gohle, R. Holzwarth, Opt. Lett. 29(13), 1542 (2004). http://www.ncbi.nlm.nih.gov/pubmed/15259740

    ADS  Google Scholar 

  116. A. Schliesser, M. Brehm, F. Keilmann, D.W. van der Weide, Opt. Express 13(22), 9029 (2005). doi:10.1364/OPEX.13.009029

    ADS  Google Scholar 

  117. I. Coddington, W.C. Swann, N.R. Newbury, Phys. Rev. Lett. 100(1), 11 (2008). doi:10.1103/PhysRevLett.100.013902. http://link.aps.org/doi/10.1103/PhysRevLett.100.013902

    Google Scholar 

  118. P. Giaccari, J.D. Deschênes, P. Saucier, J. Genest, P. Tremblay, Opt. Express 16(6), 4347 (2008). http://www.ncbi.nlm.nih.gov/pubmed/18542532

    ADS  Google Scholar 

  119. J.D. Deschênes, P. Giaccari, J. Genest, Opt. Express 18(22), 23358 (2010). doi:10.1364/OE.18.023358

    ADS  Google Scholar 

  120. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Hansch, N. Picqué, Nat. Photonics 4(1), 55 (2009). doi:10.1038/nphoton.2009.217. http://www.nature.com/nphoton/journal/v4/n1/abs/nphoton.2009.217.html

    ADS  Google Scholar 

  121. D.W. Chandler, K.E. Strecker, J. Chem. Phys. 136(15), 154201 (2012). doi:10.1063/1.3700473. http://www.ncbi.nlm.nih.gov/pubmed/22519318

    ADS  Google Scholar 

  122. S. Kassi, K. Didriche, C. Lauzin, X. de Ghellinck d’Elseghem Vaernewijck, A. Rizopoulos, M. Herman, Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 75(1), 142 (2010). doi:10.1016/j.saa.2009.09.058. http://www.ncbi.nlm.nih.gov/pubmed/19880347

    ADS  Google Scholar 

  123. X. de Ghellinck d’Elseghem Vaernewijck, K. Didriche, C. Lauzin, A. Rizopoulos, M. Herman, S. Kassi, Mol. Phys. 109(17–18), 2173 (2011). doi:10.1080/00268976.2011.602990. http://www.tandfonline.com/doi/abs/10.1080/00268976.2011.602990

    ADS  Google Scholar 

  124. A. Foltynowicz, T. Ban, P. Maslowski, F. Adler, J. Ye, Phys. Rev. Lett. 107(23), 1 (2011). doi:10.1103/PhysRevLett.107.233002

    Google Scholar 

  125. J.J. Scherer, J.B. Paul, A. O’Keefe, R.J. Saykally, Chem. Rev. 97, 25 (1997). http://pubs.acs.org/doi/abs/10.1021/cr930048d

    Google Scholar 

  126. M.D. Wheeler, S.M. Newman, A.J. Orr-Ewing, M.N.R. Ashfold, J. Chem. Soc. Faraday Trans. 94(3), 337 (1998). doi:10.1039/a707686j. http://xlink.rsc.org/?DOI=a707686j

    Google Scholar 

  127. G. Berden, P. Peeters, G. Meijer, Int. Rev. Phys. Chem. 19(4), 565 (2000). http://www.tandfonline.com/doi/abs/10.1080/014423500750040627#.UjxKi38vQlI

    Google Scholar 

  128. G. Berden, G. Meijer, W. Ubachs, in Experimental Methods in the Physical Sciences, vol. 40 (Elsevier, Amsterdam, 2003), pp. 47–82. doi:10.1016/S1079-4042(03)80018-8

    Google Scholar 

  129. B.A. Paldus, A.A. Kachanov, Can. J. Phys. 83(10), 975 (2005). doi:10.1139/p05-054. http://www.nrcresearchpress.com/doi/abs/10.1139/p05-054

    ADS  Google Scholar 

  130. M.I. Mazurenka, A.J. Orr-Ewing, R. Peverall, G.A.D. Ritchie, Annu. Rep. Prog. Chem., Sect. C, Phys. Chem. 101, 100 (2005). doi:10.1039/b408909j. http://xlink.rsc.org/?DOI=b408909j

    Google Scholar 

  131. C. Vallance, New J. Chem. 29(7), 867 (2005). doi:10.1039/b504628a. http://xlink.rsc.org/?DOI=b504628a

    Google Scholar 

  132. K.W. Busch, M.A. Busch, Cavity-Ringdown Spectroscopy (American Chemical Society, Washington, 1999), pp. i–vii. doi:10.1021/bk-1999-0720.fw001. http://pubs.acs.org/doi/abs/10.1021/bk-1999-0720.fw001

    Google Scholar 

  133. R.D. van Zee, J.P. Looney (eds.), Experimental Methods in the Physical Sciences, vol. 40 (Academic Press, New York, 2003), pp. 1–323. doi:10.1016/S1079-4042(03)80015-2. http://www.sciencedirect.com/science/article/pii/S1079404203800152, http://www.sciencedirect.com/science/bookseries/10794042/40

    Google Scholar 

  134. G. Berden, R. Engeln, Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiley-Blackwell, West Sussex, 2009)

    Google Scholar 

  135. S.M. Ball, R.L. Jones, Chem. Rev. 103(12), 5239 (2003). doi:10.1021/cr020523k. http://www.ncbi.nlm.nih.gov/pubmed/14664650

    Google Scholar 

  136. C. Wang, J. Anal. At. Spectrom. 22(11), 1347 (2007). doi:10.1039/B701223C

    Google Scholar 

  137. A. Foltynowicz, F.M. Schmidt, W. Ma, O. Axner, Appl. Phys. B, Lasers Opt. 92(3), 313 (2008). doi:10.1007/s00340-008-3126-z. <GotoISI>://000258703600003

    ADS  Google Scholar 

  138. F. Adler, M.J. Thorpe, K.C. Cossel, J. Ye, Annu. Rev. Anal. Chem. 3, 175 (2010). doi:10.1146/annurev-anchem-060908-155248. http://www.ncbi.nlm.nih.gov/pubmed/20636039

    Google Scholar 

  139. A. Foltynowicz, P. Maslowski, T. Ban, F. Adler, K.C. Cossel, T.C. Briles, J. Ye, Faraday Discuss. 150, 23 (2011). doi:10.1039/c1fd00005e. http://xlink.rsc.org/?DOI=c1fd00005e

    ADS  Google Scholar 

  140. R.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, J.B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Chem. Phys. Lett. 487(1–3), 1 (2010). doi:10.1016/j.cplett.2009.12.073. <GotoISI>://WOS:000274432400001

    ADS  Google Scholar 

  141. H. Waechter, J. Litman, A.H. Cheung, J.A. Barnes, H.P. Loock, Sensors 10(3), 1716 (2010). doi:10.3390/s100301716. <GotoISI>://WOS:000277158300016

    Google Scholar 

  142. M. Schnippering, S.R.T. Neil, S.R. Mackenzie, P.R. Unwin, Chem. Soc. Rev. 40(1), 207 (2011). doi:10.1039/c0cs00017e. <GotoISI>://WOS:000285390900016ISI>://000285390900016

    Google Scholar 

  143. B.J. Orr, Y. He, Chem. Phys. Lett. 512(1–3), 1 (2011). doi:10.1016/j.cplett.2011.05.052. http://linkinghub.elsevier.com/retrieve/pii/S0009261411006592

    ADS  Google Scholar 

  144. D.A. Long, A. Cygan, R.D. van Zee, M. Okumura, C.E. Miller, D. Lisak, J.T. Hodges, Chem. Phys. Lett. 536, 1 (2012). doi:10.1016/j.cplett.2012.03.035. http://linkinghub.elsevier.com/retrieve/pii/S0009261412003466

    ADS  Google Scholar 

  145. K.K. Lehmann, H. Huang, in Frontiers of Molecular Spectroscopy, ed. by J. Laane (Elsevier, Amsterdam, 2009), pp. 623–658

    Google Scholar 

  146. S.S. Brown, Chem. Rev. 103(12), 5219 (2003). doi:10.1021/cr020645c. http://www.ncbi.nlm.nih.gov/pubmed/14664649

    Google Scholar 

  147. M.W. Sigrist, R. Bartlome, D. Marinov, J.M. Rey, D.E. Vogler, H. Wachter, Appl. Phys. B, Lasers Opt. 90(2), 289 (2008). doi:10.1007/s00340-007-2875-4. <GotoISI>://WOS:000252990900019

    ADS  Google Scholar 

  148. M.N. Fiddler, I. Begashaw, M.A. Mickens, M.S. Collingwood, Z. Assefa, S. Bililign, Sensors 9(12), 10447 (2009). doi:10.3390/s91210447. http://www.mdpi.com/1424-8220/9/12/10447, <GotoISI>://WOS:000273048800053

    Google Scholar 

  149. X. Cui, C. Lengignon, W. Tao, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez, L. Croize, W. Chen, Y. Wang, W. Zhang, X. Gao, W. Liu, Y. Zhang, F. Dong, J. Quant. Spectrosc. Radiat. Transf. 113(11), 1300 (2012). http://www.sciencedirect.com/science/article/pii/S0022407311003943

    ADS  Google Scholar 

  150. D.B. Atkinson, Analyst 128(2), 117 (2003). doi:10.1039/b206699h. http://xlink.rsc.org/?DOI=b206699h

    ADS  Google Scholar 

  151. E.R.T. Kerstel, in Handbook of Stable Isotope Analytical Techniques, vol. 1, ed. by P.A. De Groot (Elsevier, Amsterdam, 2004), pp. 759–787

    Google Scholar 

  152. E.R.T. Kerstel, L. Gianfrani, Appl. Phys. B, Lasers Opt. 92(3), 439 (2008). doi:10.1007/s00340-008-3128-x. <GotoISI>://000258703600017

    ADS  Google Scholar 

  153. H.P. Loock, TrAC, Trends Anal. Chem. 25(7), 655 (2006). doi:10.1016/j.trac.2006.05.003. http://linkinghub.elsevier.com/retrieve/pii/S0165993606001130

    Google Scholar 

  154. S. Cheskis, A. Goldman, Prog. Energy Combust. Sci. 35(4), 365 (2009). doi:10.1016/j.pecs.2009.02.001. <GotoISI>://WOS:000267195600002

    Google Scholar 

  155. C.J. Wang, P. Sahay, Sensors 9(10), 8230 (2009). doi:10.3390/s91008230. <GotoISI>://WOS:000271265800034

    Google Scholar 

  156. R.E.H. Miles, S. Rudić, A.J. Orr-Ewing, J.P. Reid, Aerosol Sci. Technol. 45(11), 1360 (2011). doi:10.1080/02786826.2011.596170. http://dx.doi.org/10.1080/02786826.2011.596170

    Google Scholar 

  157. J.S. Caygill, F. Davis, S.P.J. Higson, Talanta 88, 14 (2012). doi:10.1016/j.talanta.2011.11.043. <GotoISI>://WOS:000301159400002

    Google Scholar 

  158. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, P. De Natale, Science (N.Y.) 330(6007), 1081 (2010). doi:10.1126/science.1195818. http://www.ncbi.nlm.nih.gov/pubmed/21030606

    ADS  Google Scholar 

  159. A. Yariv, Quantum Electronics, 3rd edn. (Wiley, New York, 1989)

    Google Scholar 

  160. K.K. Lehmann, in Cavity-Ringdown Spectroscopy—An Ultratrace-Absorption Measurement Technique, ed. by K.W. Busch, M.A. Busch (American Chemical Society, Washington, 1999), pp. 106–124. doi:10.1021/bk-1999-0720.ch008. http://pubs.acs.org/doi/abs/10.1021/bk-1999-0720.ch008

    Google Scholar 

  161. M. Triki, P. Cermak, G. Méjean, D. Romanini, Appl. Phys. B, Lasers Opt. 91(1), 195 (2008). doi:10.1007/s00340-008-2958-x. http://www.springerlink.com/index/10.1007/s00340-008-2958-x

    ADS  Google Scholar 

  162. W.T. Silfast, Laser Fundamentals, 1st edn. (Cambridge University Press, New York, 1996)

    Google Scholar 

  163. D.R. Herriott, H. Kogelnik, R. Kompfner, Appl. Opt. 3(4), 523 (1964). doi:10.1364/AO.3.000523. http://www.opticsinfobase.org/abstract.cfm?URI=ao-3-4-523

    ADS  Google Scholar 

  164. D. Romanini, Modelling the excitation field of an optical resonator. Appl. Phys. B (2013). doi:10.1007/s00340-013-5632-x

    Google Scholar 

  165. J. Courtois, A.K. Mohamed, D. Romanini, The degenerate astigmatic cavity. Phys. Rev. A (2013 to appear)

    Google Scholar 

  166. W. Riley, Handbook of Frequency Stability Analysis, NIST special publication 1065 (1999)

    Google Scholar 

  167. P. Werle, R. Miicke, F. Slemr, Appl. Phys., B Photophys. Laser Chem. 57(2), 131 (1993). doi:10.1007/BF00425997. http://link.springer.com/10.1007/BF00425997

    ADS  Google Scholar 

  168. P. Werle, Appl. Phys. B 102(2), 313 (2010). doi:10.1007/s00340-010-4165-9. http://www.springerlink.com/index/10.1007/s00340-010-4165-9

    ADS  Google Scholar 

  169. L.S. Ma, J.L. Hall, IEEE J. Quantum Electron. 26(11), 2006 (1990). doi:10.1109/3.62120. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=62120

    ADS  Google Scholar 

  170. T.W. Hansch, B. Couillaud, Opt. Commun. 35(3), 441 (1980). doi:10.1016/0030-4018(80)90069-3

    ADS  Google Scholar 

  171. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B, Lasers Opt. 31(2), 97 (1983). doi:10.1007/BF00702605. http://www.springerlink.com/index/10.1007/BF00702605

    ADS  Google Scholar 

  172. D.A. Shaddock, M.B. Gray, D.E. McClelland, Opt. Lett. 24(21), 1499 (1999). doi:10.1364/OL.24.001499

    ADS  Google Scholar 

  173. J.L. Hall, M.S. Taubman, J. Ye, Laser stabilization, in Handbook of Optics, vol. II: Design, Fabrication, and Testing; Sources and Detectors; Radiometry and Photometry, 3rd edn. (McGraw-Hill, New York, 2010)

    Google Scholar 

  174. Z. Li, R.G.T. Bennett, G.E. Stedman, Opt. Commun. 86(1), 51 (1991). doi:10.1016/0030-4018(91)90242-6. http://linkinghub.elsevier.com/retrieve/pii/0030401891902426

    ADS  Google Scholar 

  175. Z. Li, G.E. Stedman, H.R. Bilger, Opt. Commun. 100(1–4), 240 (1993). doi:10.1016/0030-4018(93)90586-T. http://linkinghub.elsevier.com/retrieve/pii/003040189390586T

    ADS  Google Scholar 

  176. J. Poirson, F. Bretenaker, M. Vallet, A. Le Floch, J. Opt. Soc. Am. B 14(11), 2811 (1997). doi:10.1364/JOSAB.14.002811. http://www.opticsinfobase.org/abstract.cfm?URI=josab-14-11-2811

    ADS  Google Scholar 

  177. M.J. Lawrence, B. Willke, M.E. Husman, E.K. Gustafson, R.L. Byer, J. Opt. Soc. Am. B 16(4), 523 (1999). doi:10.1364/JOSAB.16.000523. http://www.opticsinfobase.org/abstract.cfm?URI=josab-16-4-523

    ADS  Google Scholar 

  178. J. Morville, D. Romanini, M. Chenevier, A.A. Kachanov, Appl. Opt. 41(33), 6980 (2002). doi:10.1364/AO.41.006980. http://www.opticsinfobase.org/abstract.cfm?URI=ao-41-33-6980

    ADS  Google Scholar 

  179. B. Bakowski, L. Corner, G. Hancock, R. Kotchie, R. Peverall, G.A.D. Ritchie, Appl. Phys. B, Lasers Opt. 75(6–7), 745 (2002). doi:10.1007/s00340-002-1026-1. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00340-002-1026-1

    ADS  Google Scholar 

  180. Y. He, B.J. Orr, Appl. Phys. B, Lasers Opt. 79(8), 941 (2004). doi:10.1007/s00340-004-1691-3. http://www.springerlink.com/index/10.1007/s00340-004-1691-3

    ADS  Google Scholar 

  181. J. Courtois, A.K. Mohamed, D. Romanini, Opt. Express 18(5), 4845 (2010). http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-5-4845

    ADS  Google Scholar 

  182. A. Schawlow, C. Townes, Phys. Rev. 112(6), 1940 (1958). doi:10.1103/PhysRev.112.1940. http://link.aps.org/doi/10.1103/PhysRev.112.1940

    ADS  Google Scholar 

  183. G. Di Domenico, S. Schilt, P. Thomann, Appl. Opt. 49(25), 4801 (2010)

    Google Scholar 

  184. N. Bucalovic, V. Dolgovskiy, C. Schori, P. Thomann, G. Di Domenico, S. Schilt, Appl. Opt. 51(20), 4582 (2012). doi:10.1364/AO.51.004582

    Google Scholar 

  185. H. Rohde, J. Eschner, F. Schmidt-Kaler, R. Blatt, J. Opt. Soc. Am. B 19(6), 1425 (2002). doi:10.1364/JOSAB.19.001425. http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-6-1425

    ADS  Google Scholar 

  186. D. Redding, M. Regehr, L. Sievers, Appl. Opt. 41(15), 2894 (2002). doi:10.1364/AO.41.002894. http://www.ncbi.nlm.nih.gov/pubmed/12027177

    ADS  Google Scholar 

  187. J.T. Hodges, J. Looney, R.D. van Zee, Quantitative absorption measurements using cavity-ringdown spectroscopy with pulsed lasers, in Cavity-Ringdown Spectroscopy. An Ultratrace-Absorption Measurement Technique, ed. by K.W. Busch, M.A. Busch (American Chemical Society, Washington, 1999). http://pubs.acs.org/isbn/9780841236004

    Google Scholar 

  188. D.Z. Anderson, Appl. Opt. 23(17), 2944 (1984). http://www.ncbi.nlm.nih.gov/pubmed/18213100

    ADS  Google Scholar 

  189. G. Mueller, Q.Z. Shu, R. Adhikari, D.B. Tanner, D. Reitze, D. Sigg, N. Mavalvala, J. Camp, Opt. Lett. 25(4), 266 (2000). http://www.ncbi.nlm.nih.gov/pubmed/18059850

    ADS  Google Scholar 

  190. D.H. Lee, Y. Yoon, E.B. Kim, J.Y. Lee, Y.S. Yoo, J.W. Hahn, Appl. Phys. B, Lasers Opt. 74(4–5), 435 (2002). doi:10.1007/s003400200802. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s003400200802

    ADS  Google Scholar 

  191. D. Romanini, K.K. Lehmann, J. Chem. Phys. 99, 6287 (1993). doi:10.1063/1.465866

    ADS  Google Scholar 

  192. T. Udem, J. Reichert, R. Holzwarth, T.W. Hansch, Opt. Lett. 24(13), 881 (1999). http://www.ncbi.nlm.nih.gov/pubmed/18073883

    ADS  Google Scholar 

  193. S.A. Diddams, L.W. Hollberg, L.S. Ma, L. Robertsson, Opt. Lett. 27(1), 58 (2002). doi:10.1364/OL.27.000058. http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-1-58

    ADS  Google Scholar 

  194. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Science 288(5466), 635 (2000). doi:10.1126/science.288.5466.635. http://www.sciencemag.org/cgi/doi/10.1126/science.288.5466.635

    ADS  Google Scholar 

  195. A. Bartels, C.W. Oates, L.W. Hollberg, S.A. Diddams, Opt. Lett. 29(10), 1081 (2004). doi:10.1364/OL.29.001081. http://www.opticsinfobase.org/abstract.cfm?URI=OL-29-10-1081

    ADS  Google Scholar 

  196. R. Jason Jones, I. Thomann, J. Ye, Phys. Rev. A 69(5), 2 (2004). doi:10.1103/PhysRevA.69.051803. http://link.aps.org/doi/10.1103/PhysRevA.69.051803

    Google Scholar 

  197. W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, Y. Le Coq, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(3), 432 (2012). doi:10.1109/TUFFC.2012.2212. http://www.ncbi.nlm.nih.gov/pubmed/22481776

    Google Scholar 

  198. J.L. Hall, Rev. Mod. Phys. 78(4), 1279 (2006). doi:10.1103/RevModPhys.78.1279. http://link.aps.org/doi/10.1103/RevModPhys.78.1279

    ADS  Google Scholar 

  199. T.W. Hansch, Rev. Mod. Phys. 78(4), 1297 (2006). doi:10.1103/RevModPhys.78.1297. http://link.aps.org/doi/10.1103/RevModPhys.78.1297

    ADS  Google Scholar 

  200. T. Gherman, ML-CEAS a new high sensitivity absorption spectroscopy technique using ultra-short laser pulses. Ph.D. thesis, University J. Fourier Grenoble, 2004

    Google Scholar 

  201. R. Jason Jones, J.C. Diels, Phys. Rev. Lett. 86(15), 3288 (2001). doi:10.1103/PhysRevLett.86.3288. http://link.aps.org/doi/10.1103/PhysRevLett.86.3288

    ADS  Google Scholar 

  202. J.C. Diels, R. Jason Jones, L. Arissian, in Femtosecond Optical Frequency Comb: Principle, Operation, and Applications, ed. by J. Ye, S.T. Cundiff (Kluwer Academic/Springer, Norwell, 2005), Chap. 12. http://link.springer.com/chapter/10.1007/0-387-23791-7_12

    Google Scholar 

  203. T.C. Briles, D.C. Yost, A. Cingöz, J. Ye, T.R. Schibli, Opt. Express 18(10), 9739 (2010). doi:10.1364/OE.18.009739. http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-10-9739

    ADS  Google Scholar 

  204. S. Xiao, A.M. Weiner, Opt. Express 12(13), 2895 (2004). http://www.ncbi.nlm.nih.gov/pubmed/19483805

    ADS  Google Scholar 

  205. R. Grilli, G. Méjean, S. Kassi, I. Ventrillard, C. Abd Alrahman, E. Fasci, D. Romanini, Appl. Phys. B, Lasers Opt. 107(1), 205 (2011). doi:10.1007/s00340-011-4812-9. http://www.springerlink.com/index/10.1007/s00340-011-4812-9

    ADS  Google Scholar 

  206. S. Xiao, A.M. Weiner, C. Lin, IEEE J. Quantum Electron. 40(4), 420 (2004). doi:10.1109/JQE.2004.825210. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1278611, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1278611

    ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Kevin Lehmann and Marco Prevedelli for their critical reading of the manuscript and the useful discussions concerning several subtle issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Romanini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Romanini, D., Ventrillard, I., Méjean, G., Morville, J., Kerstel, E. (2014). Introduction to Cavity Enhanced Absorption Spectroscopy. In: Gagliardi, G., Loock, HP. (eds) Cavity-Enhanced Spectroscopy and Sensing. Springer Series in Optical Sciences, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40003-2_1

Download citation

Publish with us

Policies and ethics