Skip to main content

Effect of Rhythm on Pedestrian Flow

  • Conference paper
  • First Online:
  • 1212 Accesses

Abstract

We have calculated a fundamental diagram of pedestrians by dividing the velocity term into two parts, length of stride and pace of walking (number of steps per unit time). In spite of the simplicity of the calculation, our fundamental diagram reproduces that of traffic and pedestrian dynamics models in special cases. Theoretical analysis on pace indicates that rhythm which is slower than normal walking pace in free-flow situation increases flow if the fundamental diagram of flow is convex downward in high-density regime. In order to verify this result, we have performed the experiment by real pedestrians and observed improvement of pedestrian flow in congested situation by slow rhythm. Since slow rhythm achieves large pedestrian flow without dangerous haste, it may be a safety solution to attain smooth movement of pedestrians in congested situation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dirk Helbing. Traffic and related self-driven many-particle systems. Rev. Mod. Phys., 73(4):1067–1141, 2001.

    Google Scholar 

  2. Andreas Schadschneider, Debashish Chowdhury, and Katsuhiro Nishinari. Stochastic Transport in Complex Systems. Elsevier, 2010.

    Google Scholar 

  3. Dirk Helbing and Péter Molnár. Social force model for pedestrian dynamics. Phys. Rev. E, 51(5):4282–4286, 1995.

    Google Scholar 

  4. Masakuni Muramatsu, Tunemasa Irie, and Takashi Nagatani. Jamming transition in pedestrian counter flow. Physica A, 267:487–498, 1999.

    Article  Google Scholar 

  5. C. Burstedde, K. Klauck, A. Schadschneider, and J. Zittartz. Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A, 295:507–525, 2001.

    Article  MATH  Google Scholar 

  6. Daniel R. Parisi, Marcelo Gilman, and Herman Moldovan. A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions. Physica A, 388:3600–3608, 2009.

    Article  Google Scholar 

  7. Mohcine Chraibi, Armin Seyfried, and Andreas Schadschneider. Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E, 82(4):046111, 2010.

    Google Scholar 

  8. Armin Seyfried, Bernhard Steffen, Wolfram Klingsch, and Maik Boltes. The fundamental diagram of pedestrian movement revisited. J. Stat. Mech., 2005:P10002, 2005.

    Google Scholar 

  9. J Zhang, W Klingsch, A Schadschneider, and A Seyfried. Transitions in pedestrian fundamental diagrams of straight corridors and t-junctions. J. Stat. Mech., 2011:P06004, 2011.

    Google Scholar 

  10. Online-Database at ped-net.org homepage (http://www.pednet.org/) and the references there in, 2008.

  11. Daichi Yanagisawa, Ayako Kimura, Akiyasu Tomoeda, Ryosuke Nishi, Yushi Suma, Kazumichi Ohtsuka, and Katsuhiro Nishinari. Introduction of frictional and turning function for pedestrian outflow with an obstacle. Phys. Rev. E, 80(3):036110, 2009.

    Google Scholar 

  12. Daniel Jezbera, David Kordek, Jan Kříž, Petr Šeba, and Petr Šroll. Walkers on the circle. J. Stat. Mech., 2010:L01001, 2010.

    Google Scholar 

  13. Frank Spitzer. Interaction of markov processes. Adv. Math., 5(2):246–290, 1970.

    Google Scholar 

  14. B. Derrida. An exactly soluble non-equilibrium system: The asymmetric simple exclusion process. Physics Reports, 301(1–3):65–83, 1998.

    Article  MathSciNet  Google Scholar 

  15. Stephen Wolfram. Cellular Automata and Complexity: Collected Papers. 1994.

    Google Scholar 

  16. M. R. Evans. Phase transitions in one-dimensional nonequilibrium systems. Braz.J.Phys., 30(1):42–57, 2000.

    Google Scholar 

  17. Masahiro Kanai. Exact solution of the zero-range process: fundamental diagram of the corresponding exclusion process. J. Phys. A: Math. Theor., 40:7127–7138, 2007.

    Google Scholar 

  18. Kai Nagel and Michael Schreckenberg. A cellular automaton model for freeway traffic. J. Phys. I France, 2:2221–2229, 1992.

    Article  Google Scholar 

  19. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama. Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E, 51(2):1035–1042, 1995.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to appreciate the staffs of our experiment described in Sect. 4 for helping us. This work is financially supported by the Japan Society for the Promotion of Science and the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daichi Yanagisawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yanagisawa, D., Tomoeda, A., Nishinari, K. (2013). Effect of Rhythm on Pedestrian Flow. In: Kozlov, V., Buslaev, A., Bugaev, A., Yashina, M., Schadschneider, A., Schreckenberg, M. (eds) Traffic and Granular Flow '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39669-4_19

Download citation

Publish with us

Policies and ethics