Skip to main content

Event-Driven Successive Charge Redistribution Schemes for Clockless Analog-to-Digital Conversion

  • Chapter
  • First Online:
Design, Modeling and Testing of Data Converters

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

The analog-to-digital conversion methods based on event-driven successive charge redistribution schemes are presented in the study. In the proposed schemes, the charge redistribution is forced by a self-timed mechanism that substitutes a clock in driving a converter operation. One of important implications is that the converter almost does not consume energy in breaks between conversion cycles that can be triggered irregularly in time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matsuzawa, A.A.: Design challenges of analog-to-digital converters in nanoscale CMOS. IEICE Trans. Electron. E90-C, 779–785 (2007)

    Google Scholar 

  2. Yang, H.Y., Sarpeshkar, R.: A time-based energy-efficient analog-to-digital converter. IEEE J. Solid-State Circ. 40(8), 1590–1601 (2005)

    Article  Google Scholar 

  3. Lazar, A.A., Tóth, L.T.: Perfect recovery and sensitivity analysis of time encoded bandlimited signals. IEEE Trans. Circ. Syst. -I: Regul. Pap. 52, 2060–2073 (2005)

    Google Scholar 

  4. Lazar, A.A., Simonyi, E.K., Toth, L.T.: Time encoding of bandlimited signals, an overview. In: Proceedings of the Conference on Telecom. Systems, Modeling and Analysis (2005)

    Google Scholar 

  5. Lazar, A.A., Pnevmatikakis, E.A.: Video time encoding machines. IEEE Trans. Neural Networks 22, 461–473 (2011)

    Article  Google Scholar 

  6. Taillefer, C.S., Roberts, G.W.: Delta–Sigma A/D conversion via time-mode signal processing. IEEE Trans. Circ. Syst.-I: Regul. Pap. 56(9), 1908–1920 (2009)

    Google Scholar 

  7. Kościelnik, D., Miśkowicz, M.: Asynchronous sigma-delta analog-to-digital converter based on the charge pump integrator. Analog Integr. Circ. Sig. Process 55, 223–238 (2008)

    Article  Google Scholar 

  8. Daniels, J., Dehaene, W., Steyaert, M.S.J., Wiesbauer, A.: A/D conversion using asynchronous delta-sigma modulation and time-to-digital conversion. IEEE Trans. Circ. Syst.-II: Exp Briefs 57(9), 2404–2412 (2010)

    Article  MathSciNet  Google Scholar 

  9. Hernandez, L., Prefasi, E.: Analog-to-digital conversion using noise shaping and time encoding. IEEE Trans. Circ. Syst.-I: Regul. Pap. 55(7), 2026–2037 (2008)

    Google Scholar 

  10. Pekau, H., Yousif, A., Haslett, J.W.: A CMOS integrated linear voltage-to-pulse-delay-time converter for time based analog-to-digital converters. Proc. IEEE Int Symp. Circ. Syst. 2006, 2373–2376 (2006)

    Google Scholar 

  11. Ravinuthula, V., Harris, J.G.: Time-based arithmetic using step functions. Proc. IEEE Int. Symp. Circ. Syst. ISCAS 2004, 305–308 (2004)

    Google Scholar 

  12. Allier, E., Sicard, G., Fesquet, L., Renaudin, M.: A new class of asynchronous A/D converters based on time quantization. Proc. IEEE Int. Symp. Asynchronous Circ. Syst. ASYNC 2003, 196–205 (2003)

    Google Scholar 

  13. Kozmin, K., Johansson, J., Delsing, J.: Level-crossing ADC performance evaluation toward ultrasound application. IEEE Trans. Circ. Syst. Part I: Regul. Pap. 56, 1708–1719 (2009)

    Google Scholar 

  14. Guan, K.M., Kozat, S.S., Singer, A.C.: Adaptive reference levels in a level-crossing analog-to-digital converter, EURASIP J. Adv. Sig. Processing 2008, 11 (Article ID 513706) (2008)

    Google Scholar 

  15. Kurchuk, M., Tsividis, Y.: Signal-dependent variable-resolution clockless A/D conversion with application to continuous-time digital signal processing. IEEE Trans. Circ. Syst. Part I: Regul. Pap. 57, 982–991 (2010)

    Google Scholar 

  16. Trakimas, M., Sonkusale, S.R.: An adaptive resolution asynchronous ADC architecture for data compression in energy constrained sensing applications. IEEE Trans. Circ. Syst. Part I: Regul. Pap. 58, 921–934 (2011)

    Google Scholar 

  17. Senay, S., Chaparro, L.F., Sun, M., Sclabassi, R.J.: Adaptive level-crossing sampling and reconstruction. Proc. of European Signal Processing Conf. EUSIPCO 1296–1300 (2010)

    Google Scholar 

  18. Tsividis, Y.: Event-driven data acquisition and digital signal processing: a tutorial. IEEE Trans. Circ. Syst II: Exp Briefs 57, 577–582 (2010)

    Article  MathSciNet  Google Scholar 

  19. Miśkowicz, M.: Send-on-delta concept: an event-based data reporting strategy. Sensors 6, 49–63 (2006)

    Article  Google Scholar 

  20. Kościelnik, D., Miśkowicz, M.: Method and apparatus for conversion of portion of electric charge to digital word. PCT Patent Application WO 2011/152743, 2011

    Google Scholar 

  21. Kościelnik, D., Miśkowicz, M.: Method and apparatus for conversion of time interval to digital word. PCT Patent Application WO 2011/152744, 2011

    Google Scholar 

  22. Kościelnik, D., Miśkowicz, M.: Method and apparatus for conversion of voltage value to digital word. PCT Patent Application WO 2011/152745, 2011

    Google Scholar 

  23. Kościelnik, D., Miśkowicz, M.: A new method of charge-to-digital conversion. Proc. IEEE Int. Mixed-Signals, Sens. Syst. Test Workshop IMS3TW (2010)

    Google Scholar 

  24. Kościelnik, D., Miśkowicz, M.: A clockless time-to-digital converter. Proc. IEEE Convention Elect. Electron. Eng. Israel IEEEI 2010, 516–519 (2010)

    Google Scholar 

  25. Kościelnik, D., Miśkowicz, M.: Time-to-digital converter with direct successive charge redistribution. In: Proceedings of IMEKO International Workshop on ADC Modelling, Testing and Data Converter Analysis and Design IWADC 2011, 2011

    Google Scholar 

  26. Kościelnik, D., Miśkowicz, M., Jabłeka, M.: Analysis of conversion time of time-to-digital converters with charge redistribution. Proceeding of IMEKO International Workshop on ADC Modelling, Testing and Data Converter Analysis and Design IWADC, 2011

    Google Scholar 

  27. Allen, P.E., Holberg, D.R.: CMOS analog circuit design, 2nd edn. Oxford University Press, Oxford (2002)

    Google Scholar 

  28. Maevsky, O.V., Edel, E.A.: Converter of time intervals to code. USSR Patent 1591183, Bulletin No. 33, 070990

    Google Scholar 

  29. Kinniment, D.J., Maevsky, O.V., Bystrov, A., Russell, G., Yakovlev, A.V.: On-chip structures for timing measurement and test. In: Proceeding of IEEE International Symposium Asynchronous Circuits and Systems ASYNC 2002, pp. 190–197 (2002)

    Google Scholar 

  30. Abas, M.A., Russell, G., Kinniment, D.J.: Built-in time measurement circuits—a comparative design study. IET Comput. Digital Tech. 1(2), 87–97 (2007)

    Article  Google Scholar 

  31. Mantyniemi, A., Rahkonen, T., Kostamovaara, J.: A CMOS time-to-digital converter (TDC) based on a cyclic time domain successive approximation interpolation method. IEEE J. Solid-State Circ. 44(11), 3067–3078 (2009)

    Article  Google Scholar 

  32. Al-Ahdab, S., Mantyniemi, A., Kostamovaara, J.: Cyclic time domain successive approximation time-to-digital converter (TDC) with sub-ps-level resolution. Proceedings of IEEE Instrumentation and Measurement Technology Conference I2MTC 2011, pp. 1–4 (2011)

    Google Scholar 

  33. Kazmierkowski, M.P., Malesani, L.: Current control techniques for three-phase voltage-source PWM converters: a survey. IEEE Trans. Ind. Electron. 45(5), 691–703 (1998)

    Article  Google Scholar 

  34. Malinowski, M., Jasinski, M., Kazmierkowski, M.P.: Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM). IEEE Trans. Ind. Electron. 51(2), 447–454 (2004)

    Article  Google Scholar 

  35. Inose, H., Aoki, T., Watanabe, K.: Asynchronous delta modulation system. Electron. Lett. 2(3), 95–96 (1966)

    Article  Google Scholar 

  36. Kikkert, C.J., Miller, D.J.: Asynchronous delta sigma modulation, Proc. IREE 36, 83–88 (1975)

    Google Scholar 

  37. Guan, K., Singer, A.C.: A level-crossing sampling scheme for bursty signals. Proc. Int. Conf. Inform. Sci. Syst. 3, 1357–1359 (2006)

    Google Scholar 

  38. Wang, T., Wang, D., Hurst, P.J., Levy, B.C., Lewis, S.H.: A level-crossing analog-to-digital converter with triangular dither. IEEE Trans. Circ. Syst. Part I: Regul. Pap. 56(9), 2089–2099 (2009)

    Google Scholar 

  39. Guan, K.M., Singer, A.C.: Opportunistic sampling by level-crossing. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’07), vol. 3, pp. 1513–1516, Honolulu, 2007

    Google Scholar 

  40. Senay, S., Oh, J., Chaparro, L.F.: Regularized signal reconstruction for level-crossing sampling using Slepian functions. Sig. Process. 92, 1157–1165 (2012)

    Article  Google Scholar 

  41. Kafashan, M., Beygi, S., Marvasti, F.: Asynchronous analog-to-digital converter based on level-crossing sampling scheme. EURASIP J. Adv. Sig. Proc., 2011, 109–117 (2011)

    Google Scholar 

  42. Yen, J.L.: On nonuniform sampling of bandwidth-limited signals. IRE Trans. Circ. Theory CT-3, 251–257 (1956)

    Google Scholar 

  43. Beutler, F.J.: Error-free recovery of signals from irregularly spaced samples. SIAM Rev. 8, 328–335 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mark, J., Todd, T.: A nonuniform sampling approach to data compression. IEEE Trans. Commun. 29(1), 24–32 (1981)

    Article  Google Scholar 

  45. Schell, B., Tsividis, Y.: A continuous-time ADC/DSP/DAC system with no clock and activity-dependent power dissipation. IEEE J. Solid-State Circuits 43(11), 2472–2481 (2008)

    Article  Google Scholar 

  46. McCreary, J.L., Gray, P.R.: All-MOS charge redistribution analog-to-digital conversion techniques I. IEEE J. Solid-State Circuits 10(6), 371–379 (1975)

    Article  Google Scholar 

  47. Steele, R.: Delta Modulation Systems. Wiley, New York (1975)

    Google Scholar 

  48. Data Converters History, in: Analog-Digital Conversion, ed. by W. Kester, Analog Devices Inc., USA, 2004

    Google Scholar 

  49. Rouse Ball, W.W., Coxeter, H.S.M.: Mathematical Recreations and Essays. Dover Publications, Thirteenth Edition (1987)

    Google Scholar 

  50. Goodall, W.M.: Telephony by Pulse Code Modulation. Bell Syst. Tech. J. 26, 395–409 (1947)

    Article  Google Scholar 

  51. Bernard M. Gordon and Robert P. Talambiras, Signal Conversion Apparatus. U.S. Patent 3,108,266

    Google Scholar 

  52. C.W. Barbour, Simplified PCM Analog-to-Digital Converters Using Capacity Charge Transfer. In: Proceedings National Telemetering Conference, pp. 4.1–4.11. Chicago, 1961

    Google Scholar 

  53. T. Kugelstadt, The Operation of the SAR-ADC Based on Charge Redistribution, Texas Instruments Analog Applications Journal, pp. 10–12, Feb. 2000

    Google Scholar 

  54. Scott, M.D., Boser, B.E., Pister, K.S.J.: An ultra low-energy ADC for smart dust. IEEE J. Solid-State Circuits 38(7), 1123–1129 (2003)

    Article  Google Scholar 

  55. Hong, H., Lee, G.: A 65fJ/conversion-step 0.9-V 200-kS/s rail-to-rail 8-bit successive approximation ADC. IEEE J. Solid-State Circuits 42(10), 2161–2168 (2007)

    Article  Google Scholar 

  56. B.P. Ginsburg and A.P. Chandrakasan, An energy-efficient charge recycling approach for a SAR converter with capacitive DAC. In: Proceedings of the IEEE ISCAS, pp. 184–187, 2005

    Google Scholar 

  57. R.Y.-K. Choi and C.-Y. Tsui, A low energy two-step successive approximation algorithm for ADC design. In: Proceedings of the IEEE ISQED, pp. 317–320, 2008

    Google Scholar 

  58. Saberi, M., Lotfi, R., Mafinezhad, K., Serdijn, W.A.: Analysis of Power Consumption and Linearity in Capacitive Digital-to-Analog Converters Used in Successive Approximation ADCs, pp. 1736–1748. IEEE Trans. Circuits Syst. I, Regular Papers (2011)

    Google Scholar 

  59. K.-Y. Khoo and A. Willson, Charge Recovery on a Databus. In: Proceedings of the International Symposium on Low Power Electrical and Design, pp. 185–189, 1995

    Google Scholar 

  60. Brian P. Ginsburg and Anantha P. Chandrakasan, 500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC, IEEE J. Solid-State Circ., 42(4) (2007)

    Google Scholar 

  61. M.F. Tompsett, Semiconductor charge-coupled device analog-to-digital converter. U.S. Patent 4136335, 1979

    Google Scholar 

  62. Paul E. Green, Charge domain successive approximation analog to digital converter. Patent US 5010340

    Google Scholar 

  63. Kyung, C.M., Kim, C.K.: Pipeline analog-to-digital conversion with charge-coupled devices. IEEE J. Solid-State Circuits 15, 255–257 (1980)

    Article  Google Scholar 

  64. Kyung, C.M., Kim, C.K.: Charged-coupled analog-to-digital converter. IEEE J. Solid-State Circ. 16(6), 621–626 (1981)

    Article  Google Scholar 

  65. D. Kościelnik, M. Miśkowicz, Method and apparatus for analog-to-digital conversion using asynchronous Sigma-Delta modulation. U.S. Patent 7948413, 2011

    Google Scholar 

  66. Roza, E.: Analog-to-digital conversion via duty-cycle modulation. IEEE Trans. Circ. Syst. II 44, 907–914 (1997)

    Article  Google Scholar 

  67. Sayiner, N., Sorensen, H.N., Viswanathan, T.R.: A level-crossing sampling scheme for A/D conversion. IEEE Trans. Circ. Syst. II 43, 335–339 (1996)

    Article  Google Scholar 

  68. D. Kościelnik, M. Miśkowicz, Modeling event-driven successive charge redistribution in ADC with varying rate of charge transfer. In: Proceeding of IEEE Convention of Electrical and Electronics Engineers in Israel IEEEI 2012, 2012

    Google Scholar 

  69. Kościelnik, D., Miśkowicz, M.: Time-to-digital converters based on event-driven successive charge redistribution: a theoretical approach. Measurement 45, 2511–2528 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Miśkowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kościelnik, D., Miśkowicz, M. (2014). Event-Driven Successive Charge Redistribution Schemes for Clockless Analog-to-Digital Conversion. In: Carbone, P., Kiaei, S., Xu, F. (eds) Design, Modeling and Testing of Data Converters. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39655-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39655-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39654-0

  • Online ISBN: 978-3-642-39655-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics