Skip to main content

15 Antifungal Pharmacokinetics

  • Chapter
  • First Online:
Human Fungal Pathogens

Part of the book series: The Mycota ((MYCOTA,volume 12))

  • 2188 Accesses

Abstract

Despite the development of new antifungal drugs, invasive fungal infections are highly prevalent and cause substantial mortality. Adequate individualized treatment is important for improving patient outcomes. This chapter on the pharmacokinetics and pharmacodynamics of the compounds available will help bedside decision-making by addressing, e.g., the tremendous inter- and intra-individual variation and the importance of drug–drug interactions. Nephrotoxicity remains the major challenge of amphotericin B formulations. Echinocandins and amphotericin B show poor penetration into cerebrospinal fluid, brain, and ocular fluid. Voriconazole and fluconazole disseminate into most infection sites including the central nervous system and eye. Recent studies indicate a close relationship between treatment outcome and typical pharmacodynamic indices relative to a pathogen’s minimal inhibitory concentration (MIC). Although the peak concentration (Cmax) to MIC ratio is a good predictive index for the therapeutic efficacy of amphotericin B, for the triazoles the ratio of the area under the concentration–time curve (AUC) to the MIC and trough concentrations are better indices for predicting their therapeutic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ally R, Schurmann D, Kreisel W, Carosi G, Aguirrebengoa K, Dupont B, Hodges M, Troke P, Romero AJ (2001) A randomized, double-blind, double-dummy, multicenter trial of voriconazole and fluconazole in the treatment of esophageal candidiasis in immunocompromised patients. Clin Infect Dis 33:1447–1454

    Article  PubMed  CAS  Google Scholar 

  • Anaissie EJ, Kontoyiannis DP, Huls C, Vartivarian SE, Karl C, Prince RA, Bosso J, Bodey GP (1995) Safety, plasma concentrations, and efficacy of high-dose fluconazole in invasive mold infections. J Infect Dis 172:599–602

    Article  PubMed  CAS  Google Scholar 

  • Andes D, Safdar N (2005) Efficacy of micafungin for the treatment of candidemia. Eur J Clin Microbiol Infect Dis 24:662–664

    Article  PubMed  CAS  Google Scholar 

  • Andes D, van Ogtrop M (1999) Characterization and quantitation of the pharmacodynamics of fluconazole in a neutropenic murine disseminated candidiasis infection model. Antimicrob Agents Chemother 43:2116–2120

    PubMed  CAS  Google Scholar 

  • Andes D, Stamsted T, Conklin R (2001) Pharmacodynamics of amphotericin B in a neutropenic-mouse disseminated-candidiasis model. Antimicrob Agents Chemother 45:922–926

    Article  PubMed  CAS  Google Scholar 

  • Andes D, Marchillo K, Lowther J, Bryskier A, Stamstad T, Conklin R (2003a) In vivo pharmacodynamics of HMR 3270, a glucan synthase inhibitor, in a murine candidiasis model. Antimicrob Agents Chemother 47:1187–1192

    Article  PubMed  CAS  Google Scholar 

  • Andes D, Marchillo K, Stamstad T, Conklin R (2003b) In vivo pharmacodynamics of a new triazole, ravuconazole, in a murine candidiasis model. Antimicrob Agents Chemother 47:1193–1199

    Article  PubMed  CAS  Google Scholar 

  • Andes D, Marchillo K, Stamstad T, Conklin R (2003c) In vivo pharmacokinetics and pharmacodynamics of a new triazole, voriconazole, in a murine candidiasis model. Antimicrob Agents Chemother 47:3165–3169

    Article  PubMed  CAS  Google Scholar 

  • Andes D, Marchillo K, Conklin R, Krishna G, Ezzet F, Cacciapuoti A, Loebenberg D (2004) Pharmacodynamics of a new triazole, posaconazole, in a murine model of disseminated candidiasis. Antimicrob Agents Chemother 48:137–142

    Article  PubMed  CAS  Google Scholar 

  • Andes D, Forrest A, Lepak A, Nett J, Marchillo K, Lincoln L (2006) Impact of antimicrobial dosing regimen on evolution of drug resistance in vivo: fluconazole and Candida albicans. Antimicrob Agents Chemother 50:2374–2383

    Article  PubMed  CAS  Google Scholar 

  • Andes D, Diekema DJ, Pfaller MA, Prince RA, Marchillo K, Ashbeck J, Hou J (2008a) In vivo pharmacodynamic characterization of anidulafungin in a neutropenic murine candidiasis model. Antimicrob Agents Chemother 52:539–550

    Article  PubMed  CAS  Google Scholar 

  • Andes DR, Diekema DJ, Pfaller MA, Marchillo K, Bohrmueller J (2008b) In vivo pharmacodynamic target investigation for micafungin against Candida albicans and C. glabrata in a neutropenic murine candidiasis model. Antimicrob Agents Chemother 52:3497–3503

    Article  PubMed  CAS  Google Scholar 

  • Arndt CA, Walsh TJ, McCully CL, Balis FM, Pizzo PA, Poplack DG (1988) Fluconazole penetration into cerebrospinal fluid: implications for treating fungal infections of the central nervous system. J Infect Dis 157:178–180

    Article  PubMed  CAS  Google Scholar 

  • Astellas (2005) Mycamine. U.S. Food and Drug Administration. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.Set_Current_Drug&ApplNo=021506&DrugName=MYCAMINE&ActiveIngred=MICAFUNGIN%20SODIUM&SponsorApplicant=ASTELLAS&ProductMktStatus=1&goto=Search.DrugDetails. Accessed 9 July 2013

  • Baddley JW, Patel M, Bhavnani SM, Moser SA, Andes DR (2008) Association of fluconazole pharmacodynamics with mortality in patients with candidemia. Antimicrob Agents Chemother 52:3022–3028

    Article  PubMed  CAS  Google Scholar 

  • Banerjee R, Leaver N, Lyster H, Banner NR (2001) Coadministration of itraconazole and tacrolimus after thoracic organ transplantation. Transplant Proc 33:1600–1602

    Article  PubMed  CAS  Google Scholar 

  • Barone JA, Koh JG, Bierman RH, Colaizzi JL, Swanson KA, Gaffar MC, Moskovitz BL, Mechlinski W, Van de Velde V (1993) Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers. Antimicrob Agents Chemother 37:778–784

    Article  PubMed  CAS  Google Scholar 

  • Barone JA, Moskovitz BL, Guarnieri J, Hassell AE, Colaizzi JL, Bierman RH, Jessen L (1998) Food interaction and steady-state pharmacokinetics of itraconazole oral solution in healthy volunteers. Pharmacotherapy 18:295–301

    PubMed  CAS  Google Scholar 

  • Brammer KW, Farrow PR, Faulkner JK (1990) Pharmacokinetics and tissue penetration of fluconazole in humans. Rev Infect Dis 12(Suppl 3):S318–S326

    Article  PubMed  Google Scholar 

  • Carver PL (2004) Micafungin. Ann Pharmacother 38:1707–1721

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekar PH, Sobel JD (2006) Micafungin: a new echinocandin. Clin Infect Dis 42:1171–1178

    Article  PubMed  CAS  Google Scholar 

  • Clancy CJ, Huang H, Cheng S, Derendorf H, Nguyen MH (2006) Characterizing the effects of caspofungin on Candida albicans, Candida parapsilosis, and Candida glabrata isolates by simultaneous time-kill and postantifungal-effect experiments. Antimicrob Agents Chemother 50:2569–2572

    Article  PubMed  CAS  Google Scholar 

  • Courtney R, Pai S, Laughlin M, Lim J, Batra V (2003) Pharmacokinetics, safety, and tolerability of oral posaconazole administered in single and multiple doses in healthy adults. Antimicrob Agents Chemother 47:2788–2795

    Article  PubMed  CAS  Google Scholar 

  • Courtney R, Wexler D, Radwanski E, Lim J, Laughlin M (2004) Effect of food on the relative bioavailability of two oral formulations of posaconazole in healthy adults. Br J Clin Pharmacol 57:218–222

    Article  PubMed  Google Scholar 

  • Denning DW, Ribaud P, Milpied N, Caillot D, Herbrecht R, Thiel E, Haas A, Ruhnke M, Lode H (2002) Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis. Clin Infect Dis 34:563–571

    Article  PubMed  CAS  Google Scholar 

  • Deresinski SC, Stevens DA (2003) Caspofungin. Clin Infect Dis 36:1445–1457

    Article  PubMed  CAS  Google Scholar 

  • Dowell JA, Stogniew M, Krause D, Damle B (2007) Anidulafungin does not require dosage adjustment in subjects with varying degrees of hepatic or renal impairment. J Clin Pharmacol 47:461–470

    Article  PubMed  CAS  Google Scholar 

  • Ernst EJ, Klepser ME, Pfaller MA (1998) In vitro interaction of fluconazole and amphotericin B administered sequentially against Candida albicans: effect of concentration and exposure time. Diagn Microbiol Infect Dis 32:205–210

    Article  PubMed  CAS  Google Scholar 

  • Ernst EJ, Klepser ME, Ernst ME, Messer SA, Pfaller MA (1999) In vitro pharmacodynamic properties of MK-0991 determined by time-kill methods. Diagn Microbiol Infect Dis 33:75–80

    Article  PubMed  CAS  Google Scholar 

  • Ernst EJ, Klepser ME, Pfaller MA (2000) Postantifungal effects of echinocandin, azole, and polyene antifungal agents against Candida albicans and Cryptococcus neoformans. Antimicrob Agents Chemother 44:1108–1111

    Article  PubMed  CAS  Google Scholar 

  • Ernst EJ, Roling EE, Petzold CR, Keele DJ, Klepser ME (2002a) In vitro activity of micafungin (FK-463) against Candida spp.: microdilution, time-kill, and postantifungal-effect studies. Antimicrob Agents Chemother 46:3846–3853

    Article  PubMed  CAS  Google Scholar 

  • Ernst EJ, Yodoi K, Roling EE, Klepser ME (2002b) Rates and extents of antifungal activities of amphotericin B, flucytosine, fluconazole, and voriconazole against Candida lusitaniae determined by microdilution, Etest, and time-kill methods. Antimicrob Agents Chemother 46:578–581

    Article  PubMed  CAS  Google Scholar 

  • Eschenauer G, Depestel DD, Carver PL (2007) Comparison of echinocandin antifungals. Ther Clin Risk Manag 3:71–97

    Article  PubMed  CAS  Google Scholar 

  • Ezzet F, Wexler D, Courtney R, Krishna G, Lim J, Laughlin M (2005) Oral bioavailability of posaconazole in fasted healthy subjects: comparison between three regimens and basis for clinical dosage recommendations. Clin Pharmacokinet 44:211–220

    Article  PubMed  CAS  Google Scholar 

  • Falagas ME, Apostolou KE, Pappas VD (2006) Attributable mortality of candidemia: a systematic review of matched cohort and case-control studies. Eur J Clin Microbiol Infect Dis 25:419–425

    Article  PubMed  CAS  Google Scholar 

  • FDA (2001) Briefing document for voriconazole (oral and intravenous formulations). Antiviral Drugs Advisory Committee, U.S. Food and Drug Administration, Silver Spring. Available at http://www.fda.gov/ohrms/dockets/ac/01/briefing/3792b2_01_Pfizer.pdf. Last accessed 9 July 2013

  • Foulds G, Brennan DR, Wajszczuk C, Catanzaro A, Garg DC, Knopf W, Rinaldi M, Weidler DJ (1988) Fluconazole penetration into cerebrospinal fluid in humans. J Clin Pharmacol 28:363–366

    Article  PubMed  CAS  Google Scholar 

  • Goicoechea M, Fierer J, Johns S (2004) Treatment of candidal cholangitis with caspofungin therapy in a patient with a liver transplant: documentation of biliary excretion of caspofungin. Clin Infect Dis 38:1040–1041

    Article  PubMed  Google Scholar 

  • Groll AH, Giri N, Petraitis V, Petraitiene R, Candelario M, Bacher JS, Piscitelli SC, Walsh TJ (2000a) Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. J Infect Dis 182:274–282

    Article  PubMed  CAS  Google Scholar 

  • Groll AH, Mickiene D, Piscitelli SC, Walsh TJ (2000b) Distribution of lipid formulations of amphotericin B into bone marrow and fat tissue in rabbits. Antimicrob Agents Chemother 44:408–410

    Article  PubMed  CAS  Google Scholar 

  • Groll AH, Mickiene D, Petraitis V, Petraitiene R, Ibrahim KH, Piscitelli SC, Bekersky I, Walsh TJ (2001) Compartmental pharmacokinetics and tissue distribution of the antifungal echinocandin lipopeptide micafungin (FK463) in rabbits. Antimicrob Agents Chemother 45:3322–3327

    Article  PubMed  CAS  Google Scholar 

  • Groll AH, Lyman CA, Petraitis V, Petraitiene R, Armstrong D, Mickiene D, Alfaro RM, Schaufele RL, Sein T, Bacher J, Walsh TJ (2006) Compartmentalized intrapulmonary pharmacokinetics of amphotericin B and its lipid formulations. Antimicrob Agents Chemother 50:3418–3423

    Article  PubMed  CAS  Google Scholar 

  • Gumbo T, Drusano GL, Liu W, Ma L, Deziel MR, Drusano MF, Louie A (2006) Anidulafungin pharmacokinetics and microbial response in neutropenic mice with disseminated candidiasis. Antimicrob Agents Chemother 50:3695–3700

    Article  PubMed  CAS  Google Scholar 

  • Gumbo T, Drusano GL, Liu W, Kulawy RW, Fregeau C, Hsu V, Louie A (2007) Once-weekly micafungin therapy is as effective as daily therapy for disseminated candidiasis in mice with persistent neutropenia. Antimicrob Agents Chemother 51:968–974

    Article  PubMed  CAS  Google Scholar 

  • Hardin TC, Graybill JR, Fetchick R, Woestenborghs R, Rinaldi MG, Kuhn JG (1988) Pharmacokinetics of itraconazole following oral administration to normal volunteers. Antimicrob Agents Chemother 32:1310–1313

    Article  PubMed  CAS  Google Scholar 

  • Hariprasad SM, Mieler WF, Holz ER, Gao H, Kim JE, Chi J, Prince RA (2004) Determination of vitreous, aqueous, and plasma concentration of orally administered voriconazole in humans. Arch Ophthalmol 122:42–47

    Article  PubMed  CAS  Google Scholar 

  • Hebert MF, Smith HE, Marbury TC, Swan SK, Smith WB, Townsend RW, Buell D, Keirns J, Bekersky I (2005) Pharmacokinetics of micafungin in healthy volunteers, volunteers with moderate liver disease, and volunteers with renal dysfunction. J Clin Pharmacol 45:1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Hennig S, Wainwright CE, Bell SC, Miller H, Friberg LE, Charles BG (2006) Population pharmacokinetics of itraconazole and its active metabolite hydroxy-itraconazole in paediatric cystic fibrosis and bone marrow transplant patients. Clin Pharmacokinet 45:1099–1114

    Article  PubMed  CAS  Google Scholar 

  • Hennig S, Waterhouse TH, Bell SC, France M, Wainwright CE, Miller H, Charles BG, Duffull SB (2007) A d-optimal designed population pharmacokinetic study of oral itraconazole in adult cystic fibrosis patients. Br J Clin Pharmacol 63:438–450

    Article  PubMed  CAS  Google Scholar 

  • Hope WW, Billaud EM, Lestner J, Denning DW (2008a) Therapeutic drug monitoring for triazoles. Curr Opin Infect Dis 21:580–586

    Article  PubMed  CAS  Google Scholar 

  • Hope WW, Mickiene D, Petraitis V, Petraitiene R, Kelaher AM, Hughes JE, Cotton MP, Bacher J, Keirns JJ, Buell D, Heresi G, Benjamin DK Jr, Groll AH, Drusano GL, Walsh TJ (2008b) The pharmacokinetics and pharmacodynamics of micafungin in experimental hematogenous Candida meningoencephalitis: implications for echinocandin therapy in neonates. J Infect Dis 197:163–171

    Article  PubMed  CAS  Google Scholar 

  • Howard SJ, Lestner JM, Sharp A, Gregson L, Goodwin J, Slater J, Majithiya JB, Warn PA, Hope WW (2011) Pharmacokinetics and pharmacodynamics of posaconazole for invasive pulmonary aspergillosis: clinical implications for antifungal therapy. J Infect Dis 203:1324–1332

    Article  PubMed  CAS  Google Scholar 

  • Hyland R, Jones BC, Smith DA (2003) Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metab Dispos 31:540–547

    Article  PubMed  CAS  Google Scholar 

  • Janssen (1999) Sporanox. U.S. Food and Drug Administration. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.Set_Current_Drug&ApplNo=020966&DrugName=SPORANOX&ActiveIngred=ITRACONAZOLE&SponsorApplicant=JANSSEN%20PHARMS&ProductMktStatus=3&goto=Search.Label_ApprovalHistory. Accessed 9 July 2013

  • Jaruratanasirikul S, Kleepkaew A (1997) Influence of an acidic beverage (Coca-Cola) on the absorption of itraconazole. Eur J Clin Pharmacol 52:235–237

    Article  PubMed  CAS  Google Scholar 

  • Johnson MD, Hamilton CD, Drew RH, Sanders LL, Pennick GJ, Perfect JR (2003) A randomized comparative study to determine the effect of omeprazole on the peak serum concentration of itraconazole oral solution. J Antimicrob Chemother 51:453–457

    Article  PubMed  CAS  Google Scholar 

  • Kohl V, Muller C, Cornely OA, Abduljalil K, Fuhr U, Vehreschild JJ, Scheid C, Hallek M, Ruping MJ (2010) Factors influencing pharmacokinetics of prophylactic posaconazole in patients undergoing allogeneic stem cell transplantation. Antimicrob Agents Chemother 54:207–212

    Article  PubMed  CAS  Google Scholar 

  • Koks CH, Huitema AD, Kroon ED, Chuenyam T, Sparidans RW, Lange JM, Beijnen JH (2003) Population pharmacokinetics of itraconazole in Thai HIV-1-infected persons. Ther Drug Monit 25:229–233

    Article  PubMed  CAS  Google Scholar 

  • Kwan JT, Foxall PJ, Davidson DG, Bending MR, Eisinger AJ (1987) Interaction of cyclosporin and itraconazole. Lancet 2:282

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim BH, Nam WS, Yoon SH, Cho JY, Shin SG, Jang IJ, Yu KS (2012) Effect of CYP2C19 polymorphism on the pharmacokinetics of voriconazole after single and multiple doses in healthy volunteers. J Clin Pharmacol 52(2):195–203

    Google Scholar 

  • Lepak AJ, Andes DR (2011) Antifungal PK/PD considerations in fungal pulmonary infections. Semin Respir Crit Care Med 32:783–794

    Article  PubMed  Google Scholar 

  • Lewis RE, Wiederhold NP, Klepser ME (2005) In vitro pharmacodynamics of amphotericin B, itraconazole, and voriconazole against Aspergillus, Fusarium, and Scedosporium spp. Antimicrob Agents Chemother 49:945–951

    Article  PubMed  CAS  Google Scholar 

  • Lewis RE, Liao G, Hou J, Chamilos G, Prince RA, Kontoyiannis DP (2007) Comparative analysis of amphotericin B lipid complex and liposomal amphotericin B kinetics of lung accumulation and fungal clearance in a murine model of acute invasive pulmonary aspergillosis. Antimicrob Agents Chemother 51:1253–1258

    Article  PubMed  CAS  Google Scholar 

  • Lin SJ, Schranz J, Teutsch SM (2001) Aspergillosis case-fatality rate: systematic review of the literature. Clin Infect Dis 32:358–366

    Article  PubMed  CAS  Google Scholar 

  • Louie A, Drusano GL, Banerjee P, Liu QF, Liu W, Kaw P, Shayegani M, Taber H, Miller MH (1998) Pharmacodynamics of fluconazole in a murine model of systemic candidiasis. Antimicrob Agents Chemother 42:1105–1109

    PubMed  CAS  Google Scholar 

  • Lutsar I, Roffey S, Troke P (2003) Voriconazole concentrations in the cerebrospinal fluid and brain tissue of guinea pigs and immunocompromised patients. Clin Infect Dis 37:728–732

    Article  PubMed  Google Scholar 

  • Mavridou E, Bruggemann RJ, Melchers WJ, Mouton JW, Verweij PE (2010) Efficacy of posaconazole against three clinical Aspergillus fumigatus isolates with mutations in the cyp51A gene. Antimicrob Agents Chemother 54:860–865

    Article  PubMed  CAS  Google Scholar 

  • McLachlan AJ, Tett SE (1996) Pharmacokinetics of fluconazole in people with HIV infection: a population analysis. Br J Clin Pharmacol 41:291–298

    Article  PubMed  CAS  Google Scholar 

  • Merck (2001) Cancidas. U.S. Food and Drug Administration. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.Set_Current_Drug&ApplNo=021227&DrugName=CANCIDAS&ActiveIngred=CASPOFUNGIN%20ACETATE&SponsorApplicant=MERCK&ProductMktStatus=1&goto=Search.DrugDetails. Accessed 9 July 2013

  • Merck (2010) Pharmacokinetics, safety, and tolerability of intravenous posaconazole solution followed by oral posaconazole suspension in subjects at high risk for invasive fungal infections (P05520 AM3). Clinicaltrials.gov identifier NCT01075984. Available at http://clinicaltrials.gov/ct2/show/NCT01075984. Last accessed 9 July 2013

  • Merck (2013) Pharmacokinetics and safety of posaconazole tablet in participants at high risk for invasive fungal infections (MK-5592-065 AM1). Clinicaltrials.gov identifier NCT01777763. Available at http://www.clinicaltrials.gov/ct2/show/NCT01777763. Last accessed 9 July 2013

  • Mian UK, Mayers M, Garg Y, Liu QF, Newcomer G, Madu C, Liu W, Louie A, Miller MH (1998) Comparison of fluconazole pharmacokinetics in serum, aqueous humor, vitreous humor, and cerebrospinal fluid following a single dose and at steady state. J Ocul Pharmacol Ther 14:459–471

    Article  PubMed  CAS  Google Scholar 

  • Nivoix Y, Leveque D, Herbrecht R, Koffel JC, Beretz L, Ubeaud-Sequier G (2008) The enzymatic basis of drug-drug interactions with systemic triazole antifungals. Clin Pharmacokinet 47:779–792

    Article  PubMed  CAS  Google Scholar 

  • O’Day DM, Foulds G, Williams TE, Robinson RD, Allen RH, Head WS (1990) Ocular uptake of fluconazole following oral administration. Arch Ophthalmol 108:1006–1008

    Article  PubMed  Google Scholar 

  • Odds FC, Bossche HV (2000) Antifungal activity of itraconazole compared with hydroxy-itraconazole in vitro. J Antimicrob Chemother 45:371–373

    Article  PubMed  CAS  Google Scholar 

  • Okugawa S, Ota Y, Tatsuno K, Tsukada K, Kishino S, Koike K (2007) A case of invasive central nervous system aspergillosis treated with micafungin with monitoring of micafungin concentrations in the cerebrospinal fluid. Scand J Infect Dis 39:344–346

    Article  PubMed  CAS  Google Scholar 

  • Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O (2008) Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis 46:201–211

    Article  PubMed  CAS  Google Scholar 

  • Pfizer (1990) Diflucan. U.S. Food and Drug Administration. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.Set_Current_Drug&ApplNo=019949&DrugName=DIFLUCAN&ActiveIngred=FLUCONAZOLE&SponsorApplicant=PFIZER&ProductMktStatus=1&goto=Search.Drug Details. Accessed 9 July 2013

  • Pfizer (2002) Vfend. U.S. Food and Drug Administration. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.Set_Current_Drug&ApplNo=021267&DrugName=VFEND&ActiveIngred=VORICONAZOLE&SponsorApplicant=PFIZER&ProductMktStatus=1&goto=Search.DrugDetails. Accessed 9 July 2013

  • Pfizer (2006) Eraxis. U.S. Food and Drug Administration. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.Set_Current_Drug&ApplNo=021948&DrugName=ERAXIS&ActiveIngred=ANIDULAFUNGIN&SponsorApplicant=PFIZER&ProductMktStatus=1&goto=Search.Label_ApprovalHistory. Accessed 9 July 2013

  • Poirier JM, Cheymol G (1998) Optimisation of itraconazole therapy using target drug concentrations. Clin Pharmacokinet 35:461–473

    Article  PubMed  CAS  Google Scholar 

  • Pound MW, Townsend ML, Drew RH (2010) Echinocandin pharmacodynamics: review and clinical implications. J Antimicrob Chemother 65:1108–1118

    Article  PubMed  CAS  Google Scholar 

  • Savani DV, Perfect JR, Cobo LM, Durack DT (1987) Penetration of new azole compounds into the eye and efficacy in experimental Candida endophthalmitis. Antimicrob Agents Chemother 31:6–10

    Article  PubMed  CAS  Google Scholar 

  • Schering, (2006) Noxafil. U.S. Food and Drug Administration

    Google Scholar 

  • Smith J, Safdar N, Knasinski V, Simmons W, Bhavnani SM, Ambrose PG, Andes D (2006) Voriconazole therapeutic drug monitoring. Antimicrob Agents Chemother 50:1570–1572

    Article  PubMed  CAS  Google Scholar 

  • Smith WJ, Drew RH, Perfect JR (2009) Posaconazole’s impact on prophylaxis and treatment of invasive fungal infections: an update. Expert Rev Anti Infect Ther 7:165–181

    Article  PubMed  CAS  Google Scholar 

  • Tan K, Brayshaw N, Tomaszewski K, Troke P, Wood N (2006) Investigation of the potential relationships between plasma voriconazole concentrations and visual adverse events or liver function test abnormalities. J Clin Pharmacol 46:235–243

    Article  PubMed  CAS  Google Scholar 

  • Templeton IE, Thummel KE, Kharasch ED, Kunze KL, Hoffer C, Nelson WL, Isoherranen N (2008) Contribution of itraconazole metabolites to inhibition of CYP3A4 in vivo. Clin Pharmacol Ther 83:77–85

    Article  PubMed  CAS  Google Scholar 

  • Turnidge JD, Gudmundsson S, Vogelman B, Craig WA (1994) The postantibiotic effect of antifungal agents against common pathogenic yeasts. J Antimicrob Chemother 34:83–92

    Article  PubMed  CAS  Google Scholar 

  • Van de Velde VJ, Van Peer AP, Heykants JJ, Woestenborghs RJ, Van Rooy P, De Beule KL, Cauwenbergh GF (1996) Effect of food on the pharmacokinetics of a new hydroxypropyl-beta-cyclodextrin formulation of itraconazole. Pharmacotherapy 16:424–428

    PubMed  Google Scholar 

  • Vazquez JA, Sobel JD (2006) Anidulafungin: a novel echinocandin. Clin Infect Dis 43:215–222

    Article  PubMed  Google Scholar 

  • Walsh TJ, Lee JW, Kelly P, Bacher J, Lecciones J, Thomas V, Lyman C, Coleman D, Gordee R, Pizzo PA (1991) Antifungal effects of the nonlinear pharmacokinetics of cilofungin, a 1,3-beta-glucan synthetase inhibitor, during continuous and intermittent intravenous infusions in treatment of experimental disseminated candidiasis. Antimicrob Agents Chemother 35:1321–1328

    Article  PubMed  CAS  Google Scholar 

  • Walsh TJ, Pappas P, Winston DJ, Lazarus HM, Petersen F, Raffalli J, Yanovich S, Stiff P, Greenberg R, Donowitz G, Schuster M, Reboli A, Wingard J, Arndt C, Reinhardt J, Hadley S, Finberg R, Laverdiere M, Perfect J, Garber G, Fioritoni G, Anaissie E, Lee J (2002) Voriconazole compared with liposomal amphotericin B for empirical antifungal therapy in patients with neutropenia and persistent fever. N Engl J Med 346:225–234

    Article  PubMed  CAS  Google Scholar 

  • Warn PA, Sharp A, Parmar A, Majithiya J, Denning DW, Hope WW (2009) Pharmacokinetics and pharmacodynamics of a novel triazole, isavuconazole: mathematical modeling, importance of tissue concentrations, and impact of immune status on antifungal effect. Antimicrob Agents Chemother 53:3453–3461

    Article  PubMed  CAS  Google Scholar 

  • Wexler D, Courtney R, Richards W, Banfield C, Lim J, Laughlin M (2004) Effect of posaconazole on cytochrome P450 enzymes: a randomized, open-label, two-way crossover study. Eur J Pharm Sci 21:645–653

    Article  PubMed  CAS  Google Scholar 

  • Wiederhold NP, Kontoyiannis DP, Chi J, Prince RA, Tam VH, Lewis RE (2004) Pharmacodynamics of caspofungin in a murine model of invasive pulmonary aspergillosis: evidence of concentration-dependent activity. J Infect Dis 190:1464–1471

    Article  PubMed  CAS  Google Scholar 

  • Wiederhold NP, Tam VH, Chi J, Prince RA, Kontoyiannis DP, Lewis RE (2006) Pharmacodynamic activity of amphotericin B deoxycholate is associated with peak plasma concentrations in a neutropenic murine model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother 50:469–473

    Article  PubMed  CAS  Google Scholar 

  • Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedja Farowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farowski, F., Cornely, O.A. (2014). 15 Antifungal Pharmacokinetics. In: Kurzai, O. (eds) Human Fungal Pathogens. The Mycota, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39432-4_15

Download citation

Publish with us

Policies and ethics