Skip to main content

Fusarium oxysporum: A “Moving” View of Pathogenicity

  • Chapter
  • First Online:
Genomics of Soil- and Plant-Associated Fungi

Part of the book series: Soil Biology ((SOILBIOL,volume 36))

  • 2230 Accesses

Abstract

The genus Fusarium includes a number of important soilborne plant pathogenic and toxicogenic filamentous fungi with worldwide distribution. They have been subjected to considerable research, and availability of tools like transposon tagging, Agrobacterium-mediated transformation and gene disruption has facilitated both forward and reverse genetic studies of plant pathogenesis in Fusarium. Research on Fusarium genetics and genomics accelerated with the availability and analysis of whole genome sequence of four important species, viz. F. graminearum, F. verticillioides, F. oxysporum and F. solani. Detailed bioinformatics and experimental evidence revealed an interesting secret in Fusarium pathogenicity—the existence of lineage-specific (LS) genomic regions in F. oxysporum that could determine pathogenicity. It was proven experimentally that in F. oxysporum transfer of such a lineage-specific chromosome harbouring pathogenicity genes could render a non-pathogenic strain pathogenic. This mobile pathogenicity chromosome opened up a very novel field of research involving horizontal chromosome transfer (HCT) as a basic mechanism in the evolution of Fusarium species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios GN (2004) Plant pathology, 5th edn. Elsevier, Burlington, MA

    Google Scholar 

  • Akagi Y, Akamatsu H, Otani H, Kodama M (2009) Horizontal chromosome transfer, a mechanism for the evolution and differentiation of a plant-pathogenic fungus. Eukaryot Cell 8:1732–1738

    PubMed  CAS  Google Scholar 

  • Akamatsu H, Taga M, Kodama M, Johnson R, Otani H, Kohmoto K (1999) Molecular karyotypes for Alternaria plant pathogens known to produce host-specific toxins. Curr Genet 35:647–656

    PubMed  CAS  Google Scholar 

  • Bayram O, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36:1–24

    PubMed  CAS  Google Scholar 

  • Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506

    PubMed  CAS  Google Scholar 

  • Beckman CH (2000) Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol Mol Plant Pathol 57:101–110

    CAS  Google Scholar 

  • Beckman CH, Roberts E (1995) On the nature and genetic basis for resistance and tolerance to fungal wilt diseases of plants. Adv Bot Res 21:35–77

    Google Scholar 

  • Bishop C, Cooper RM (1983) An ultrastructural study of vascular colonization in three vascular wilt diseases. I. Colonization of susceptible cultivars. Physiol Plant Pathol 23:323–343

    Google Scholar 

  • Bishop C, Cooper RM (1984) Ultrastructure of vascular colonization by fungal wilt pathogens. II. Invasion of resistant cultivars. Physiol Plant Pathol 24:277–289

    Google Scholar 

  • Bölker M (1998) Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet Biol 25:143–156

    PubMed  Google Scholar 

  • Bolton MD, Thomma BPHJ (2008) The complexity of nitrogen metabolism and nitrogen-regulated gene expression in plant pathogenic fungi. Physiol Mol Plant Pathol 72:104–110

    CAS  Google Scholar 

  • Bulk R (1991) Application of cell and tissue culture and in vitro selection for disease resistance breeding—a review. Euphytica 56:269–285

    Google Scholar 

  • Calero-Nieto F, Di Pietro A, Roncero MI, Hera C (2007) Role of the transcriptional activator xlnR of Fusarium oxysporum in regulation of xylanase genes and virulence. Mol Plant Microbe Interact 20:977–985

    PubMed  CAS  Google Scholar 

  • Calero-Nieto F, Hera C, Di Pietro A, Orejas M, Roncero MI (2008) Regulatory elements mediating expression of xylanase genes in Fusarium oxysporum. Fungal Genet Biol 45:28–34

    PubMed  CAS  Google Scholar 

  • Canero DC, Roncero MI (2008a) Functional analyses of laccase genes from Fusarium oxysporum. Phytopathology 98:509–518

    PubMed  CAS  Google Scholar 

  • Canero DC, Roncero MI (2008b) Influence of the chloride channel of Fusarium oxysporum on extracellular laccase activity and virulence on tomato plants. Microbiology 154:1474–1481

    PubMed  Google Scholar 

  • Caracuel Z, Roncero MI, Espeso EA, Gonzalez-Verdejo CI, Garcia-Maceira FI, Di Pietro A (2003) The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Mol Microbiol 48:765–779

    PubMed  CAS  Google Scholar 

  • Caracuel Z, Martinez-Rocha AL, Di Pietro A, Madrid MP, Roncero MI (2005) Fusarium oxysporum gas1 encodes a putative beta-1,3-glucanosyltransferase required for virulence on tomato plants. Mol Plant Microbe Interact 18:1140–1147

    PubMed  CAS  Google Scholar 

  • Chakrabarti A, Rep M, Wang B, Ashton A, Dodds P, Ellis J (2011) Variation in potential effector genes distinguishing Australian and non‐Australian isolates of the cotton wilt pathogen Fusarium oxysporum f. sp. vasinfectum. Plant Pathol 60:232–243

    CAS  Google Scholar 

  • Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, Grimwood J, Schmutz J, Taga M, White GJ, Zhou S, Schwartz DC, Freitag M, Ma LJ, Danchin EG, Henrissat B, Coutinho PM, Nelson DR, Straney D, Napoli CA, Barker BM, Gribskov M, Rep M, Kroken S, Molnar I, Rensing C, Kennell JC, Zamora J, Farman ML, Selker EU, Salamov A, Shapiro H, Pangilinan J, Lindquist E, Lamers C, Grigoriev IV, Geiser DM, Covert SF, Temporini E, Vanetten HD (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5:e1000618

    PubMed  Google Scholar 

  • Cullen PJ, Sabbagh W Jr, Graham E, Irick MM, Van Olden EK, Neal C, Delrow J, Bardwell L, Sprague GF Jr (2004) A signaling mucin at the head of the Cdc42-and MAPK-dependent filamentous growth pathway in yeast. Sci Signal 18:1695

    CAS  Google Scholar 

  • Cuomo CA, Güldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma LJ, Baker SE, Rep M (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–1402

    PubMed  CAS  Google Scholar 

  • Czymmek KJ, Fogg M, Powell DH, Sweigard J, Park SY, Kang S (2007) In vivo time-lapse documentation using confocal and multi-photon microscopy reveals the mechanisms of invasion into the Arabidopsis root vascular system by Fusarium oxysporum. Fungal Genet Biol 44:1011–1023

    PubMed  CAS  Google Scholar 

  • de Vega-Bartol JJ, Martin-Dominguez R, Ramos B, Garcia-Sanchez MA, Diaz-Minguez JM (2011) New virulence groups in Fusarium oxysporum f. sp. phaseoli: the expression of the gene coding for the transcription factor ftf1 correlates with virulence. Phytopathology 101:470–479

    PubMed  Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    PubMed  Google Scholar 

  • Delgado-Jarana J, Martinez-Rocha AL, Roldan-Rodriguez R, Roncero MI, Di Pietro A (2005) Fusarium oxysporum G-protein beta subunit Fgb1 regulates hyphal growth, development, and virulence through multiple signalling pathways. Fungal Genet Biol 42:61–72

    PubMed  CAS  Google Scholar 

  • DeZwaan TM, Carroll AM, Valent B, Sweigard JA (1999) Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11:2013–2030

    PubMed  CAS  Google Scholar 

  • Di Pietro A, Roncero M (1996a) Purification and characterization of a pectate lyase from Fusarium oxysporum f. sp. lycopersici produced on tomato vascular tissue. Physiol Mol Plant Pathol 49:177–185

    Google Scholar 

  • Di Pietro A, Roncero MIG (1996b) Endopolygalacturonase from Fusarium oxysporum f. sp. lycopersici: purification, characterization, and production during infection of tomato plants. Phytopathology 86:1324–1330

    Google Scholar 

  • Di Pietro A, Roncero MI (1998) Cloning, expression, and role in pathogenicity of pg1 encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum. Mol Plant Microbe Interact 11:91–98

    PubMed  Google Scholar 

  • Di Pietro A, Roncero MIG (2006) Purification and characterization of an exo‐polygalacturonase from the tomato vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici. FEMS Microbiol Lett 145:295–299

    Google Scholar 

  • Di Pietro A, Garcia-MacEira FI, Meglecz E, Roncero MI (2001) A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol Microbiol 39:1140–1152

    PubMed  Google Scholar 

  • Di Pietro A, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MI (2003) Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol Plant Pathol 4:315–325

    PubMed  Google Scholar 

  • Divon HH, Ziv C, Davydov O, Yarden O, Fluhr R (2006) The global nitrogen regulator, FNR1, regulates fungal nutrition-genes and fitness during Fusarium oxysporum pathogenesis. Mol Plant Pathol 7:485–497

    PubMed  CAS  Google Scholar 

  • Dowd C, Wilson IW, McFadden H (2004) Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp. vasinfectum. Mol Plant Microbe Interact 17:654–667

    PubMed  CAS  Google Scholar 

  • Duyvesteijn RG, van Wijk R, Boer Y, Rep M, Cornelissen BJ, Haring MA (2005) Frp1 is a Fusarium oxysporum F-box protein required for pathogenicity on tomato. Mol Microbiol 57:1051–1063

    PubMed  CAS  Google Scholar 

  • Ellis JG, Rafiqi M, Gan P, Chakrabarti A, Dodds PN (2009) Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens. Curr Opin Plant Biol 12:399–405

    PubMed  CAS  Google Scholar 

  • Fourie G, Steenkamp ET, Gordon TR, Viljoen A (2009) Evolutionary relationships among the Fusarium oxysporum f. sp. cubense vegetative compatibility groups. Appl Environ Microbiol 75:4770–4781

    PubMed  CAS  Google Scholar 

  • Fourie G, Steenkamp ET, Ploetz RC, Gordon TR, Viljoen A (2011) Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infect Genet Evol 11:533–542

    PubMed  CAS  Google Scholar 

  • Garcia-Maceira FI, Di Pietro A, Huertas-Gonzalez MD, Ruiz-Roldan MC, Roncero MI (2001) Molecular characterization of an endopolygalacturonase from Fusarium oxysporum expressed during early stages of infection. Appl Environ Microbiol 67:2191–2196

    PubMed  CAS  Google Scholar 

  • Garcıća Maceira FI, Pietro A, Roncero MIG (1997) Purification and characterization of a novel exopolygalacturonase from Fusarium oxysporum f. sp. lycopersici. FEMS Microbiol Lett 154:37–43

    Google Scholar 

  • Gardiner DM, Osborne S, Kazan K, Manners JM (2009) Low pH regulates the production of deoxynivalenol by Fusarium graminearum. Microbiology 155:3149–3156

    PubMed  CAS  Google Scholar 

  • Geiser D, del Mar Jiménez-Gasco M, Kang S, Makalowska I, Veeraraghavan N, Ward T, Zhang N, Kuldau G, O’Donnell K (2004) FUSARIUM-ID v. 1.0: a DNA sequence database for identifying Fusarium. Eur J Plant Pathol 110:473–479

    CAS  Google Scholar 

  • Glass NL, Jacobson DJ, Shiu PK (2000) The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annu Rev Genet 34:165–186

    PubMed  CAS  Google Scholar 

  • Gomez-Gomez E, Isabel M, Roncero G, Di Pietro A, Hera C (2001) Molecular characterization of a novel endo-beta-1,4-xylanase gene from the vascular wilt fungus Fusarium oxysporum. Curr Genet 40:268–275

    PubMed  CAS  Google Scholar 

  • Gomez-Gomez E, Ruiz-Roldan MC, Di Pietro A, Roncero MI, Hera C (2002) Role in pathogenesis of two endo-beta-1,4-xylanase genes from the vascular wilt fungus Fusarium oxysporum. Fungal Genet Biol 35:213–222

    PubMed  CAS  Google Scholar 

  • Gordon T, Martyn R (1997) The evolutionary biology of Fusarium oxysporum. Annu Rev Phytopathol 35:111–128

    PubMed  CAS  Google Scholar 

  • Hamm HE (1998) The many faces of G protein signaling. J Biol Chem 273:669–672

    PubMed  CAS  Google Scholar 

  • Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    PubMed  CAS  Google Scholar 

  • Hatta R, Ito K, Hosaki Y, Tanaka T, Tanaka A, Yamamoto M, Akimitsu K, Tsuge T (2002) A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata. Genetics 161:59–70

    PubMed  CAS  Google Scholar 

  • He C, Rusu AG, Poplawski AM, Irwin JA, Manners JM (1998) Transfer of a supernumerary chromosome between vegetatively incompatible biotypes of the fungus Colletotrichum gloeosporioides. Genetics 150:1459–1466

    PubMed  CAS  Google Scholar 

  • Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact 22:115–122

    PubMed  CAS  Google Scholar 

  • Houterman PM, Cornelissen BJ, Rep M (2008) Suppression of plant resistance gene-based immunity by a fungal effector. PLoS Pathog 4:e1000061

    PubMed  Google Scholar 

  • Houterman PM, Ma L, van Ooijen G, de Vroomen MJ, Cornelissen BJ, Takken FL, Rep M (2009) The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly. Plant J 58:970–978

    PubMed  CAS  Google Scholar 

  • Hu J, Chen C, Peever T, Dang H, Lawrence C, Mitchell T (2012) Genomic characterization of the conditionally dispensable chromosome in Alternaria arborescens provides evidence for horizontal gene transfer. BMC Genomics 13:171

    PubMed  CAS  Google Scholar 

  • Imazaki I, Kurahashi M, Iida Y, Tsuge T (2007) Fow2, a Zn(II)2Cys6-type transcription regulator, controls plant infection of the vascular wilt fungus Fusarium oxysporum. Mol Microbiol 63:737–753

    PubMed  CAS  Google Scholar 

  • Ishikawa FH, Souza EA, Shoji JY, Connolly L, Freitag M, Read ND, Roca MG (2012) Heterokaryon incompatibility is suppressed following conidial anastomosis tube fusion in a fungal plant pathogen. PLoS One 7:e31175

    PubMed  CAS  Google Scholar 

  • Ito S, Takahara H, Kawaguchi T, Tanaka S, Kameya‐Iwaki M (2002) Post‐transcriptional silencing of the tomatinase gene in Fusarium oxysporum f. sp lycopersici. J Phytopathol 150:474–480

    CAS  Google Scholar 

  • Ito S, Eto T, Tanaka S, Yamauchi N, Takahara H, Ikeda T (2004) Tomatidine and lycotetraose, hydrolysis products of alpha-tomatine by Fusarium oxysporum tomatinase, suppress induced defense responses in tomato cells. FEBS Lett 571:31–34

    PubMed  CAS  Google Scholar 

  • Ito S, Ihara T, Tamura H, Tanaka S, Ikeda T, Kajihara H, Dissanayake C, Abdel-Motaal FF, El-Sayed MA (2007) alpha-Tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum. FEBS Lett 581:3217–3222

    PubMed  CAS  Google Scholar 

  • Jain S, Akiyama K, Mae K, Ohguchi T, Takata R (2002) Targeted disruption of a G protein alpha subunit gene results in reduced pathogenicity in Fusarium oxysporum. Curr Genet 41:407–413

    PubMed  CAS  Google Scholar 

  • Jain S, Akiyama K, Kan T, Ohguchi T, Takata R (2003) The G protein beta subunit FGB1 regulates development and pathogenicity in Fusarium oxysporum. Curr Genet 43:79–86

    PubMed  CAS  Google Scholar 

  • Jain S, Akiyama K, Takata R, Ohguchi T (2005) Signaling via the G protein alpha subunit FGA2 is necessary for pathogenesis in Fusarium oxysporum. FEMS Microbiol Lett 243:165–172

    PubMed  CAS  Google Scholar 

  • Johnson LJ, Johnson RD, Akamatsu H, Salamiah A, Otani H, Kohmoto K, Kodama M (2001) Spontaneous loss of a conditionally dispensable chromosome from the Alternaria alternata apple pathotype leads to loss of toxin production and pathogenicity. Curr Genet 40:65–72

    PubMed  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    PubMed  CAS  Google Scholar 

  • Jonkers W, Rep M (2009a) Mutation of CRE1 in Fusarium oxysporum reverts the pathogenicity defects of the FRP1 deletion mutant. Mol Microbiol 74:1100–1113

    PubMed  CAS  Google Scholar 

  • Jonkers W, Rep M (2009b) Lessons from fungal F-box proteins. Eukaryot Cell 8:677–695

    PubMed  CAS  Google Scholar 

  • Jonkers W, Rodrigues CD, Rep M (2009) Impaired colonization and infection of tomato Δroots by the Deltafrp1 mutant of Fusarium oxysporum correlates with reduced CWDE gene expression. Mol Plant Microbe Interact 22:507–518

    PubMed  CAS  Google Scholar 

  • Jonkers W, Dong Y, Broz K, Kistler HC (2012) The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum. PLoS Pathog 8:e1002724

    PubMed  CAS  Google Scholar 

  • Kapteyn JC, Ram AF, Groos EM, Kollar R, Montijn RC, Van Den Ende H, Llobell A, Cabib E, Klis FM (1997) Altered extent of cross-linking of beta1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall beta1,3-glucan content. J Bacteriol 179:6279–6284

    PubMed  CAS  Google Scholar 

  • Kazan K, Gardiner DM, Manners JM (2012) On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Mol Plant Pathol 13(4):399–413

    PubMed  CAS  Google Scholar 

  • Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, Manners JM, Kazan K (2009) The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell 21:2237–2252

    PubMed  CAS  Google Scholar 

  • Kistler HC, Alabouvette C, Baayen RP, Bentley S, Brayford D, Coddington A, Correll J, Daboussi MJ, Elias K, Fernandez D, Gordon TR, Katan T, Kim HG, Leslie JF, Martyn RD, Migheli Q, Moore NY, O’Donnell K, Ploetz RC, Rutherford MA, Summerell B, Waalwijk C, Woo S (1998) Systematic numbering of vegetative compatibility groups in the plant pathogenic fungus Fusarium oxysporum. Phytopathology 88:30–32

    PubMed  CAS  Google Scholar 

  • Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, Thomma BP, Chen Z, Henrissat B, Lee YH, Park J, Garcia-Pedrajas MD, Barbara DJ, Anchieta A, de Jonge R, Santhanam P, Maruthachalam K, Atallah Z, Amyotte SG, Paz Z, Inderbitzin P, Hayes RJ, Heiman DI, Young S, Zeng Q, Engels R, Galagan J, Cuomo CA, Dobinson KF, Ma LJ (2011) Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog 7:e1002137

    PubMed  CAS  Google Scholar 

  • Lagopodi AL, Ram AF, Lamers GE, Punt PJ, Van den Hondel CA, Lugtenberg BJ, Bloemberg GV (2002) Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Mol Plant Microbe Interact 15:172–179

    PubMed  CAS  Google Scholar 

  • Lairini K, Perez-Espinosa A, Pineda M, Ruiz-Rubio M (1996) Purification and characterization of tomatinase from Fusarium oxysporum f. sp. lycopersici. Appl Environ Microbiol 62:1604–1609

    PubMed  CAS  Google Scholar 

  • Lenardon MD, Munro CA, Gow NA (2010) Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 13:416–423

    PubMed  CAS  Google Scholar 

  • Leslie JF, Summerell BA, Bullock S (2006) The Fusarium laboratory manual. Wiley, Oxford

    Google Scholar 

  • Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291

    PubMed  CAS  Google Scholar 

  • Lievens B, Houterman PM, Rep M (2009) Effector gene screening allows unambiguous identification of Fusarium oxysporum f. sp. lycopersici races and discrimination from other formae speciales. FEMS Microbiol Lett 300:201–215

    PubMed  CAS  Google Scholar 

  • Lopez-Berges MS, Di Pietro A, Daboussi MJ, Wahab HA, Vasnier C, Roncero MI, Dufresne M, Hera C (2009) Identification of virulence genes in Fusarium oxysporum f. sp. lycopersici by large-scale transposon tagging. Mol Plant Pathol 10:95–107

    PubMed  CAS  Google Scholar 

  • Lopez-Berges MS, Rispail N, Prados-Rosales RC, Di Pietro A (2010) A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. Plant Cell 22:2459–2475

    PubMed  CAS  Google Scholar 

  • Lopez-Berges MS, Capilla J, Turra D, Schafferer L, Matthijs S, Jochl C, Cornelis P, Guarro J, Haas H, Di Pietro A (2012) HapX-mediated iron homeostasis is essential for rhizosphere competence and virulence of the soilborne pathogen Fusarium oxysporum. Plant Cell 24:3805–3822

    PubMed  CAS  Google Scholar 

  • Lopez-Berges MS, Hera C, Sulyok M, Schafer K, Capilla J, Guarro J, Di Pietro A (2013) The velvet complex governs mycotoxin production and virulence of Fusarium oxysporum on plant and mammalian hosts. Mol Microbiol 87:49–65

    PubMed  CAS  Google Scholar 

  • Luz J, Paterson R, Brayford D (1990) Fusaric acid and other metabolite production in Fusarium oxysporum f. sp. vasinfectum. Lett Appl Microbiol 11:141–144

    CAS  Google Scholar 

  • Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, Houterman PM, Kang S, Shim WB, Woloshuk C, Xie X, Xu JR, Antoniw J, Baker SE, Bluhm BH, Breakspear A, Brown DW, Butchko RA, Chapman S, Coulson R, Coutinho PM, Danchin EG, Diener A, Gale LR, Gardiner DM, Goff S, Hammond-Kosack KE, Hilburn K, Hua-Van A, Jonkers W, Kazan K, Kodira CD, Koehrsen M, Kumar L, Lee YH, Li L, Manners JM, Miranda-Saavedra D, Mukherjee M, Park G, Park J, Park SY, Proctor RH, Regev A, Ruiz-Roldan MC, Sain D, Sakthikumar S, Sykes S, Schwartz DC, Turgeon BG, Wapinski I, Yoder O, Young S, Zeng Q, Zhou S, Galagan J, Cuomo CA, Kistler HC, Rep M (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    PubMed  CAS  Google Scholar 

  • Madrid MP, Di Pietro A, Roncero MI (2003) Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds. Mol Microbiol 47:257–266

    PubMed  CAS  Google Scholar 

  • Manners JM, He C (2011) Slow-growing heterokaryons as potential intermediates in supernumerary chromosome transfer between biotypes of Colletotrichum gloeosporioides. Mycol Prog 10:383–388

    Google Scholar 

  • Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22:368–376

    PubMed  CAS  Google Scholar 

  • Martinez-Rocha AL, Roncero MI, Lopez-Ramirez A, Marine M, Guarro J, Martinez-Cadena G, Di Pietro A (2008) Rho1 has distinct functions in morphogenesis, cell wall biosynthesis and virulence of Fusarium oxysporum. Cell Microbiol 10:1339–1351

    PubMed  CAS  Google Scholar 

  • Martin-Udiroz M, Madrid MP, Roncero MI (2004) Role of chitin synthase genes in Fusarium oxysporum. Microbiology 150:3175–3187

    PubMed  CAS  Google Scholar 

  • Martin-Urdiroz M, Roncero MI, Gonzalez-Reyes JA, Ruiz-Roldan C (2008) ChsVb, a class VII chitin synthase involved in septation, is critical for pathogenicity in Fusarium oxysporum. Eukaryot Cell 7:112–121

    PubMed  CAS  Google Scholar 

  • Matsumoto K, Barbosa ML, Souza LAC, Teixeira JB (1995) Race 1 fusarium wilt tolerance on banana plants selected by fusaric acid. Euphytica 84:67–71

    Google Scholar 

  • McFadden HG, Wilson IW, Chapple RM, Dowd C (2006) Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) genes expressed during infection of cotton (Gossypium hirsutum)dagger. Mol Plant Pathol 7:87–101

    PubMed  CAS  Google Scholar 

  • Meldrum R, Fraser-Smith S, Tran-Nguyen LTT, Daly A, Aitken EAB (2012) Presence of putative pathogenicity genes in isolates of Fusarium oxysporum f. sp. cubense from Australia. Australas Plant Pathol 41:551–557

    Google Scholar 

  • Merhej J, Urban M, Dufresne M, Hammond-Kosack KE, Richard-Forget F, Barreau C (2012) The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum. Mol Plant Pathol 13:363–374

    PubMed  CAS  Google Scholar 

  • Mesterhazy A (1973) The morphology of an underscribed form of anastomosis in Fusarium. Mycologia 65:916–919

    PubMed  CAS  Google Scholar 

  • Michielse CB, Rep M (2009) Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol 10:311–324

    PubMed  CAS  Google Scholar 

  • Michielse CB, van Wijk R, Reijnen L, Cornelissen BJ, Rep M (2009a) Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis. Genome Biol 10:R4

    PubMed  Google Scholar 

  • Michielse CB, van Wijk R, Reijnen L, Manders EM, Boas S, Olivain C, Alabouvette C, Rep M (2009b) The nuclear protein Sge1 of Fusarium oxysporum is required for parasitic growth. PLoS Pathog 5:e1000637

    PubMed  Google Scholar 

  • Michielse CB, Reijnen L, Olivain C, Alabouvette C, Rep M (2012) Degradation of aromatic compounds through the beta-ketoadipate pathway is required for pathogenicity of the tomato wilt pathogen Fusarium oxysporum f. sp. lycopersici. Mol Plant Pathol 13:1089–1100

    PubMed  CAS  Google Scholar 

  • O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci U S A 95:2044–2049

    PubMed  Google Scholar 

  • O’Donnell K, Gueidan C, Sink S, Johnston PR, Crous PW, Glenn A, Riley R, Zitomer NC, Colyer P, Waalwijk C, Lee T, Moretti A, Kang S, Kim HS, Geiser DM, Juba JH, Baayen RP, Cromey MG, Bithell S, Sutton DA, Skovgaard K, Ploetz R, Corby Kistler H, Elliott M, Davis M, Sarver BA (2009) A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. Fungal Genet Biol 46:936–948

    PubMed  Google Scholar 

  • Olivain C, Alabouvette C (1999) Process of tomato root colonization by a pathogenic strain of Fusarium oxysporum f. sp. lycopersici in comparison with a non‐pathogenic strain. New Phytol 141:497–510

    Google Scholar 

  • Olivain C, Humbert C, Nahalkova J, Fatehi J, L’Haridon F, Alabouvette C (2006) Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil. Appl Environ Microbiol 72:1523–1531

    PubMed  CAS  Google Scholar 

  • Ortoneda M, Guarro J, Madrid MP, Caracuel Z, Roncero MI, Mayayo E, Di Pietro A (2004) Fusarium oxysporum as a multihost model for the genetic dissection of fungal virulence in plants and mammals. Infect Immun 72:1760–1766

    PubMed  CAS  Google Scholar 

  • Ospina-Giraldo MD, Mullins E, Kang S (2003) Loss of function of the Fusarium oxysporum SNF1 gene reduces virulence on cabbage and Arabidopsis. Curr Genet 44:49–57

    PubMed  CAS  Google Scholar 

  • Palecek SP, Parikh AS, Huh JH, Kron SJ (2002) Depression of Saccharomyces cerevisiae invasive growth on non-glucose carbon sources requires the Snf1 kinase. Mol Microbiol 45:453–469

    PubMed  CAS  Google Scholar 

  • Pareja-Jaime Y, Roncero MI, Ruiz-Roldan MC (2008) Tomatinase from Fusarium oxysporum f. sp. lycopersici is required for full virulence on tomato plants. Mol Plant Microbe Interact 21:728–736

    PubMed  CAS  Google Scholar 

  • Peñalva MA, Tilburn J, Bignell E, Arst HN (2008) Ambient pH gene regulation in fungi: making connections. Trends Microbiol 16:291–300

    PubMed  Google Scholar 

  • Pérez-García A, Snoeijers SS, Joosten MHAJ, Goosen T, De Wit PJGM (2001) Expression of the avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum is regulated by the global nitrogen response factor NRF1. Mol Plant Microbe Interact 14:316–325

    PubMed  Google Scholar 

  • Perez-Nadales E, Di Pietro A (2011) The membrane mucin Msb2 regulates invasive growth and plant infection in Fusarium oxysporum. Plant Cell 23:1171–1185

    PubMed  CAS  Google Scholar 

  • Prados Rosales RC, Di Pietro A (2008) Vegetative hyphal fusion is not essential for plant infection by Fusarium oxysporum. Eukaryot Cell 7:162–171

    PubMed  CAS  Google Scholar 

  • Qu P, Yamashita K, Toda T, Priyatmojo A, Kubota M, Hyakumachi M (2008) Heterokaryon formation in Thanatephorus cucumeris (Rhizoctonia solani) AG-1 IC. Mycol Res 112:1088–1100

    PubMed  CAS  Google Scholar 

  • Ramos B, Alves-Santos FM, Garcia-Sanchez MA, Martin-Rodrigues N, Eslava AP, Diaz-Minguez JM (2007) The gene coding for a new transcription factor (ftf1) of Fusarium oxysporum is only expressed during infection of common bean. Fungal Genet Biol 44:864–876

    PubMed  CAS  Google Scholar 

  • Read ND, Roca MG (2006) Vegetative hyphal fusion in filamentous fungi. In: Baluska F, Volkmann D, Barlow PW (eds) Cell-cell channels. Springer, New York, NY, pp 87–98

    Google Scholar 

  • Rep M, Kistler HC (2010) The genomic organization of plant pathogenicity in Fusarium species. Curr Opin Plant Biol 13:420–426

    PubMed  CAS  Google Scholar 

  • Rep M, van der Does HC, Meijer M, van Wijk R, Houterman PM, Dekker HL, de Koster CG, Cornelissen BJ (2004) A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Mol Microbiol 53:1373–1383

    PubMed  CAS  Google Scholar 

  • Rep M, Meijer M, Houterman PM, van der Does HC, Cornelissen BJ (2005) Fusarium oxysporum evades I-3-mediated resistance without altering the matching avirulence gene. Mol Plant Microbe Interact 18:15–23

    PubMed  CAS  Google Scholar 

  • Rispail N, Di Pietro A (2009) Fusarium oxysporum Ste12 controls invasive growth and virulence downstream of the Fmk1 MAPK cascade. Mol Plant Microbe Interact 22:830–839

    PubMed  CAS  Google Scholar 

  • Rispail N, Di Pietro A (2010a) The homeodomain transcription factor Ste12: connecting fungal MAPK signalling to plant pathogenicity. Commun Integr Biol 3:327–332

    PubMed  Google Scholar 

  • Rispail N, Di Pietro A (2010b) The two-component histidine kinase Fhk1 controls stress adaptation and virulence of Fusarium oxysporum. Mol Plant Pathol 11:395–407

    PubMed  CAS  Google Scholar 

  • Roca MG, Davide LC, Mendes-Costa MC, Wheals A (2003) Conidial anastomosis tubes in Colletotrichum. Fungal Genet Biol 40:138–145

    PubMed  Google Scholar 

  • Roca MG, Davide LC, Davide LM, Mendes-Costa MC, Schwan RF, Wheals AE (2004) Conidial anastomosis fusion between Colletotrichum species. Mycol Res 108:1320–1326

    PubMed  Google Scholar 

  • Roca MG, Arlt J, Jeffree CE, Read ND (2005) Cell biology of conidial anastomosis tubes in Neurospora crassa. Eukaryot Cell 4:911–919

    PubMed  CAS  Google Scholar 

  • Roca GM, Read ND, Wheals AE (2006) Conidial anastomosis tubes in filamentous fungi. FEMS Microbiol Lett 249:191–198

    Google Scholar 

  • Roldan-Arjona T, Perez-Espinosa A, Ruiz-Rubio M (1999) Tomatinase from Fusarium oxysporum f. sp. lycopersici defines a new class of saponinases. Mol Plant Microbe Interact 12:852–861

    PubMed  CAS  Google Scholar 

  • Roncero C (2002) The genetic complexity of chitin synthesis in fungi. Curr Genet 41:367–378

    PubMed  CAS  Google Scholar 

  • Rosales RCP, Di Pietro A (2008) Vegetative hyphal fusion is not essential for plant infection by Fusarium oxysporum. Eukaryot Cell 7:162–171

    Google Scholar 

  • Ruiz-Roldan MC, Kohli M, Roncero MI, Philippsen P, Di Pietro A, Espeso EA (2010) Nuclear dynamics during germination, conidiation, and hyphal fusion of Fusarium oxysporum. Eukaryot Cell 9:1216–1224

    PubMed  CAS  Google Scholar 

  • Schure EG, Riel NAW, Verrips CT (2006) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24:67–83

    Google Scholar 

  • Skovgaard K, Nirenberg HI, O’Donnell K, Rosendahl S (2001) Evolution of Fusarium oxysporum f. sp. vasinfectum races inferred from multigene genealogies. Phytopathology 91:1231–1237

    PubMed  CAS  Google Scholar 

  • Snoeijers SS, Pérez-García A, Joosten MHAJ, De Wit PJGM (2000) The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens. Eur J Plant Pathol 106:493–506

    CAS  Google Scholar 

  • Soanes DM, Kershaw MJ, Cooley RN, Talbot NJ (2002) Regulation of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 15:1253–1267

    PubMed  CAS  Google Scholar 

  • Stover R, Ploetz R (1990) Fusarium wilt of banana: some history and current status of the disease. In: Ploetz R (ed) Fusarium wilt of banana. APS Press, St Paul, MN, USA, pp 1–7

    Google Scholar 

  • Summerell BA, Laurence MH, Liew ECY, Leslie JF (2010) Biogeography and phylogeography of Fusarium: a review. Fungal Divers 44:3–13

    Google Scholar 

  • Takken F, Rep M (2010) The arms race between tomato and Fusarium oxysporum. Mol Plant Pathol 11:309–314

    PubMed  CAS  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    PubMed  CAS  Google Scholar 

  • Teichert S, Wottawa M, Schonig B, Tudzynski B (2006) Role of the Fusarium fujikuroi TOR kinase in nitrogen regulation and secondary metabolism. Eukaryot Cell 5:1807–1819

    PubMed  CAS  Google Scholar 

  • Thatcher LF, Manners JM, Kazan K (2009) Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. Plant J 58:927–939

    PubMed  CAS  Google Scholar 

  • Thatcher LF, Gardiner DM, Kazan K, Manners JM (2012) A highly conserved effector in Fusarium oxysporum is required for full virulence on Arabidopsis. Mol Plant Microbe Interact 25:180–190

    PubMed  CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    CAS  Google Scholar 

  • Toda T, Hyakumachi M (2006) Heterokaryon formation in Thanatephorus cucumeris anastomosis group 2-2 IV. Mycologia 98:726–736

    PubMed  Google Scholar 

  • Tucker SL, Talbot NJ (2001) Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol 39:385–417

    PubMed  CAS  Google Scholar 

  • van der Does HC, Duyvesteijn RG, Goltstein PM, van Schie CC, Manders EM, Cornelissen BJ, Rep M (2008) Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells. Fungal Genet Biol 45:1257–1264

    PubMed  Google Scholar 

  • Vu TT, Sikora RA, Hauschild R (2004) Effects of endophytic Fusarium oxysporum towards Radopholus similis activity in absence of banana. Commun Agric Appl Biol Sci 69:381–385

    PubMed  CAS  Google Scholar 

  • Wong KH, Hynes MJ, Todd RB, Davis MA (2007) Transcriptional control of nmrA by the bZIP transcription factor MeaB reveals a new level of nitrogen regulation in Aspergillus nidulans. Mol Microbiol 66:534–551

    PubMed  CAS  Google Scholar 

  • Wu HS, Liu DY, Bao W, Ying RR, Ou YH, Huo ZH, Li YF, Shen QR (2008a) Effects of vanillic acid on the growth and development of Fusarium oxysporum f. sp. niveum. Allelo J 22:111–122

    Google Scholar 

  • Wu HS, Raza W, Fan JQ, Sun YG, Bao W, Shen QR (2008b) Cinnamic acid inhibits growth but stimulates production of pathogenesis factors by in vitro cultures of Fusarium oxysporum f. sp. niveum. J Agric Food Chem 56:1316–1321

    PubMed  CAS  Google Scholar 

  • Wu HS, Raza W, Liu DY, Wu CL, Mao ZS, Xu YC, Shen QR (2008c) Allelopathic impact of artificially applied coumarin on Fusarium oxysporum f. sp. niveum. World J Microbiol Biotechnol 24:1297–1304

    CAS  Google Scholar 

  • Young ET, Zhang C, Shokat KM, Parua PK, Braun KA (2012) The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA polymerase II activity, and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae. J Biol Chem 287:29021–29034

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apratim Chakrabarti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chakrabarti, A. (2013). Fusarium oxysporum: A “Moving” View of Pathogenicity. In: Horwitz, B., Mukherjee, P., Mukherjee, M., Kubicek, C. (eds) Genomics of Soil- and Plant-Associated Fungi. Soil Biology, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39339-6_7

Download citation

Publish with us

Policies and ethics