Skip to main content

The Family Geobacteraceae

  • Reference work entry
  • First Online:

Abstract

Geobacteraceae, a family within the order Desulfuromonadales, is in this chapter described as consisting of the genus Geobacter and the sole species Pelobacter propionicus. The genus Geobacter comprises anaerobic, non-fermenting chemoorganotrophic mesophiles. Their hallmark feature is the ability to reduce insoluble Fe(III) and Mn(IV) for which they can employ several mechanisms, of which the most notably is extracellular electron transfer via electric conductive nanowires. Geobacter species are physiological versatile. They all oxidize acetate and mainly use small organic acids and alcohols. Several species also oxidize monoaromatic hydrocarbons, such as toluene and benzene. Next to Fe(III), a range of other electron acceptors can be used, and Geobacter species can transfer electron directly to other microbial species or graphite electrodes. Sulfur is often respired, and some species respire organohalides. P. propionicus is phylogenetically located within the Geobacter clade, but several of its physiological characteristics are distinct from Geobacter properties: it can ferment but does not utilize acetate as an electron donor nor oxidizes organic compounds completely. Furthermore, it does not contain the c-type cytochromes that are involved in electron transfer to Fe(III) in Geobacter species. Members of the genus Geobacter often dominate in iron-reducing settings, in particular in environments that have been subject to anthropogenic influences. They represent a rare case of environmental dominant species that are relatively easy to enrich and isolate. Genome-scale metabolic models have strongly contributed to understanding their physiology and ecology. The physiological characteristics of Geobacter species are employed in environmental biotechnology, such as the natural attenuation of organic matter, bioremediation of aromatic hydrocarbons, heavy metals and organohalides, and generating bioenergy in microbial fuel cells and microbial electrolysis cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams LK, Harrison JM, Lloyd JR, Langley S, Fortin D (2007) Activity and diversity of Fe(III)-reducing bacteria in a 3000-year-old acid mine drainage site analogue. Geophys J Roy Astron Soc 24:295–305

    CAS  Google Scholar 

  • Aklujkar M, Krushkal J, DiBartolo G, Lapidus A, Land ML, Lovley DR (2009) The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens. BMC Microbiol 9:e109

    Google Scholar 

  • Aklujkar M, Young ND, Holmes D, Chavan M, Risso C, Kiss HE, Han CS, Land ML, Lovley DR (2010) The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments. BMC Genomics 11:e490

    Google Scholar 

  • Aklujkar M, Haveman SA, DiDonato R, Chertkov O, Han CS, Land ML, Brown P, Lovley DR (2012) The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features. BMC Genomics 13:e690

    Google Scholar 

  • Barlett M, Zhuang K, Mahadevan R, Lovley D (2012) Integrative analysis of Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation. Biogeosciences 9:1033–1040

    CAS  Google Scholar 

  • Bauer I, Kappler A (2009) Rates and extent of reduction of Fe(III) compounds and O-2 by humic substances. Environ Sci Technol 43:4902–4908

    CAS  PubMed  Google Scholar 

  • Bazylinski DA, Dean AJ, Schuler D, Phillips EJP, Lovley DR (2000) N-2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ Microbiol 2:266–273

    CAS  PubMed  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bosch J, Fritzsche A, Totsche KU, Meckenstock RU (2010) Nanosized ferrihydrite colloids facilitate microbial iron reduction under flow conditions. Geophys J Roy Astron Soc 27:123–129

    CAS  Google Scholar 

  • Botton S, van Harmelen M, Braster M, Parsons JR, Röling WFM (2007) Dominance of Geobacteraceae in BTX-degrading enrichments from an iron-reducing aquifer. FEMS Microbiol Ecol 62:118–130

    CAS  PubMed  Google Scholar 

  • Boukhalfa H, Icopini GA, Reilly SD, Neu MP (2007) Plutonium(IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1. Appl Environ Microbiol 73:5897–5903

    PubMed Central  CAS  PubMed  Google Scholar 

  • Butler JE, He Q, Nevin KP, He ZL, Zhou JZ, Lovley DR (2007) Genomic and microarray analysis of aromatics degradation in Geobacter metallireducens and comparison to a Geobacter isolate from a contaminated field site. BMC Genomics 8

    Google Scholar 

  • Butler JE, Young ND, Lovley DR (2010) Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes. BMC Genomics 11:e40

    Google Scholar 

  • Butler JE, Young ND, Aklujkar M, Lovley DR (2012) Comparative genomic analysis of Geobacter sulfurreducens KN400, a strain with enhanced capacity for extracellular electron transfer and electricity production. BMC Genomics 13:e471

    Google Scholar 

  • Caccavo F, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ (1994) Geobacter sulfurreducens sp. nov., a hydrogen-oxidizing and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cervantes FJ, Vu-Thi-Thu L, Lettinga G, Field JA (2004) Quinone-respiration improves dechlorination of carbon tetrachloride by anaerobic sludge. Appl Microbiol Biotechnol 64:702–711

    CAS  PubMed  Google Scholar 

  • Chae KJ, Choi MJ, Lee J, Ajayi FF, Kim IS (2008) Biohydrogen production via biocatalyzed electrolysis in acetate-fed bioelectrochemical cells and microbial community analysis. Int J Hydrogen Energy 33:5184–5192

    CAS  Google Scholar 

  • Childers SE, Ciufo S, Lovley DR (2002) Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416:767–769

    CAS  PubMed  Google Scholar 

  • Chin KJ, Esteve-Nunez A, Leang C, Lovley DR (2004) Direct correlation between rates of anaerobic respiration and levels of mRNA for key respiratory genes in Geobacter sulfurreducens. Appl Environ Microbiol 70:5183–5189

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coates JD, Lovley DR (2005) Genus I. Geobacter. Pages 1017. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s Manual of Systematic Bacteriology. Springer, New York

    Google Scholar 

  • Coates JD, Phillips EJP, Lonergan DJ, Jenter H, Lovley DR (1996) Isolation of Geobacter species from diverse sedimentary environments. Appl Environ Microbiol 62:1531–1536

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coates JD, Ellis DJ, Blunt-Harris EL, Gaw CV, Roden EE, Lovley DR (1998) Recovery of humic-reducing bacteria from a diversity of environments. Appl Environ Microbiol 64:1504–1509

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coates JD, Bhupathiraju VK, Achenbach LA, McInerney MJ, Lovley DR (2001) Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. Int J Syst Evol Microbiol 51:581–588

    CAS  PubMed  Google Scholar 

  • Coby AJ, Picardal F, Shelobolina E, Xu HF, Roden EE (2011) Repeated anaerobic microbial redox cycling of iron. Appl Environ Microbiol 77:6036–6042

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coppi MV, Leang C, Sandler SJ, Lovley DR (2001) Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67:3180–3187

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cord-Ruwisch R, Lovley DR, Schink B (1998) Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microbiol 64:2232–2236

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cummings DE, Snoeyenbos-West OL, Newby DT, Niggemyer AM, Lovley DR, Achenbach LA, Rosenzweig RF (2003) Diversity of Geobacteraceae species inhabiting metal-polluted freshwater lake sediments ascertained by 16S rDNA analyses. Microb Ecol 46:257–269

    CAS  PubMed  Google Scholar 

  • De Wever H, Cole JR, Fettig MR, Hogan DA, Tiedje JM (2000) Reductive dehalogenation of trichloroacetic acid by Trichlorobacter thiogenes gen. nov., sp nov. Appl Environ Microbiol 66:2297–2301

    PubMed Central  PubMed  Google Scholar 

  • Doong RA, Schink B (2002) Cysteine-mediated reductive dissolution of poorly crystalline iron(III) oxides by Geobacter sulfurreducens. Environ Sci Technol 36:2939–2945

    CAS  PubMed  Google Scholar 

  • Elifantz H, N’Guessan LA, Mouser PJ, Williams KH, Wilkins MJ, Risso C, Holmes DE, Long PE, Lovley DR (2010) Expression of acetate permease-like (apl) genes in subsurface communities of Geobacter species under fluctuating acetate concentrations. FEMS Microbiol Ecol 73:441–449

    CAS  PubMed  Google Scholar 

  • Finneran KT, Housewright ME, Lovley DR (2002) Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environ Microbiol 4:510–516

    CAS  PubMed  Google Scholar 

  • Finneran KT, Johnsen CV, Lovley DR (2003) Rhodoferax ferrireducens sp nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int J Syst Evol Microbiol 53:669–673

    CAS  PubMed  Google Scholar 

  • Garrity GM, Bell JA, Lilburn T (2005) Family II. Geobacteraceae fam. nov. Pages 1017. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s Manual of Systematic Bacteriology. Springer, New York

    Google Scholar 

  • Greene AC, Patel BKC, Yacob S (2009) Geoalkalibacter subterraneus sp nov., an anaerobic Fe(III)- and Mn(IV)-reducing bacterium from a petroleum reservoir, and emended descriptions of the family Desulfuromonadaceae and the genus Geoalkalibacter. Int J Syst Evol Microbiol 59:781–785

    CAS  PubMed  Google Scholar 

  • Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39:8943–8947

    CAS  PubMed  Google Scholar 

  • Hartner T, Straub KL, Kannenberg E (2005) Occurrence of hopanoid lipids in anaerobic Geobacter species. FEMS Microbiol Lett 243:59–64

    PubMed  Google Scholar 

  • Hedrick DB, Peacock AD, Lovley DR, Woodard TL, Nevin KP, Long PE, White DC (2009) Polar lipid fatty acids, LPS-hydroxy fatty acids, and respiratory quinones of three Geobacter strains, and variation with electron acceptor. J Ind Microbiol Biotechnol 36:205–209

    CAS  PubMed  Google Scholar 

  • Holmes DE, Finneran KT, O’Neil RA, Lovley DR (2002) Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol 68:2300–2306

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holmes DE, Nevin KP, Lovley DR (2004a) Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam. nov. Int J Syst Evol Microbiol 54:1591–1599

    CAS  PubMed  Google Scholar 

  • Holmes DE, Nevin KP, Lovley DR (2004b) In situ expression of nifD in Geobacteraceae in subsurface sediments. Appl Environ Microbiol 70:7251–7259

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holmes DE, Nevin KP, O’Neil RA, Ward JE, Adams LA, Woodard TL, Vrionis HA, Lovley DR (2005) Potential for quantifying expression of the Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current-harvesting electrodes. Appl Environ Microbiol 71:6870–6877

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holmes DE, O’Neil RA, Vrionis HA, N’Guessan LA, Ortiz-Bernad I, Larrahondo MJ, Adams LA, Ward JA, Nicoll JS, Nevin KP, Chavan MA, Johnson JP, Long PE, Lovley DR (2007) Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments. ISME J 1:663–677

    CAS  PubMed  Google Scholar 

  • Holmes DE, Mester T, O’Neil RA, Perpetua LA, Larrahondo MJ, Glaven R, Sharma ML, Ward JE, Nevin KP, Lovley DR (2008) Genes for two multicopper proteins required for Fe(III) oxide reduction in Geobacter sulfurreducens have different expression patterns both in the subsurface and on energy-harvesting electrodes. Microbiology 154:1422–1435

    CAS  PubMed  Google Scholar 

  • Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68–71

    CAS  PubMed  Google Scholar 

  • Islam FS, Pederick RL, Gault AG, Adams LK, Polya DA, Charnock JM, Lloyd JR (2005) Interactions between the Fe(III)-reducing bacterium Geobacter sulfurreducens and arsenate, and capture of the metalloid by biogenic Fe(II). Appl Environ Microbiol 71:8642–8648

    PubMed Central  CAS  PubMed  Google Scholar 

  • Izallalen M, Mahadevan R, Burgard A, Postier B, Didonato R, Sun J, Schilling CH, Lovley DR (2008) Geobacter sulfurreducens strain engineered for increased rates of respiration. Metab Eng 10:267–275

    CAS  PubMed  Google Scholar 

  • Jones EJP, Voytek MA, Corum MD, Orem WH (2010) Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium. Appl Environ Microbiol 76:7013–7022

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaden J, Galushko AS, Schink B (2002) Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes. Arch Microbiol 178:53–58

    CAS  PubMed  Google Scholar 

  • Kiely PD, Rader G, Regan JM, Logan BE (2011) Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts. Bioresour Technol 102:361–366

    CAS  PubMed  Google Scholar 

  • Kuever J, Rainey FA, Widdel F (2005) Family I. Desulfuromonaceae fam. nov. Pages 1006. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s Manual of Systematic Bacteriology. Springer, New York

    Google Scholar 

  • Kunapuli U, Lueders T, Meckenstock RU (2007) The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME J 1:643–653

    CAS  PubMed  Google Scholar 

  • Kunapuli U, Jahn MK, Lueders T, Geyer R, Heipieper HJ, Meckenstock RU (2010) Desulfitobacterium aromaticivorans sp nov and Geobacter toluenoxydans sp nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int J Syst Evol Microbiol 60:686–695

    CAS  PubMed  Google Scholar 

  • Kung JW, Loffler C, Dorner K, Heintz D, Gallien S, Van Dorsselaer A, Friedrich T, Boll M (2009) Identification and characterization of the tungsten-containing class of benzoyl-coenzyme A reductases. Proc Natl Acad Sci USA 106:17687–17692

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kusel K, Blothe M, Schulz D, Reiche M, Drake HL (2008) Microbial reduction of iron and porewater biogeochemistry in acidic peatlands. Biogeosciences 5:1537–1549

    Google Scholar 

  • Law N, Ansari S, Livens FR, Renshaw JC, Lloyd JR (2008) Formation of nanoscale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens. Appl Environ Microbiol 74:7090–7093

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leang C, Coppi MV, Lovley DR (2003) OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J Bacteriol 185:2096–2103

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leang C, Qian XL, Mester T, Lovley DR (2010) Alignment of the c-Type Cytochrome OmcS along Pili of Geobacter sulfurreducens. Appl Environ Microbiol 76:4080–4084

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin WC, Coppi MV, Lovley DR (2004) Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Appl Environ Microbiol 70:2525–2528

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin B, Braster M, van Breukelen BM, van Verseveld HW, Westerhoff HV, Röling WFM (2005) Geobacteraceae community composition is related to hydrochemistry and biodegradation in an iron-reducing aquifer polluted by a neighboring landfill. Appl Environ Microbiol 71:5983–5991

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin B, Braster M, Röling WFM, van Breukelen BM (2007a) Iron-reducing microorganisms in a landfill leachate-polluted aquifer: complementing culture-independent information with enrichments and isolations. Geophys J Roy Astron Soc 24:283–294

    CAS  Google Scholar 

  • Lin B, Hyacinthe C, Bonneville S, Braster M, Van Cappellen P, Röling WFM (2007b) Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe. Environ Microbiol 9:1956–1968

    CAS  PubMed  Google Scholar 

  • Lin B, Westerhoff HV, Röling WFM (2009) How Geobacteraceae may dominate subsurface biodegradation: physiology of Geobacter metallireducens in slow-growth habitat-simulating retentostats. Environ Microbiol 11:2425–2433

    CAS  PubMed  Google Scholar 

  • Lloyd JR, Sole VA, Van Praagh CVG, Lovley DR (2000) Direct and Fe(II)-mediated reduction of technetium by Fe(III)- reducing bacteria. Appl Environ Microbiol 66:3743–3749

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lonergan DJ, Jenter HL, Coates JD, Phillips EJP, Schmidt TM, Lovley DR (1996) Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178:2402–2408

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lovley DR (2011) Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy. Rev Environ Sci Biotechnol 10:101–105

    Google Scholar 

  • Lovley DR, Blunt-Harris EL (1999) Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction. Appl Environ Microbiol 65:4252–4254

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lovley DR, Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and para-cresol by the dissimilatory iron-reducing organism, GS-15. Appl Environ Microbiol 56:1858–1864

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy-metabolism - organic-carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lovley DR, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Phillips EJP, Siegel DI (1989) Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339:297–300

    CAS  Google Scholar 

  • Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJP, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344

    CAS  PubMed  Google Scholar 

  • Lovley DR, Woodward JC, Chapelle FH (1994) Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370:128–131

    CAS  PubMed  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996a) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448

    CAS  Google Scholar 

  • Lovley DR, Woodward JC, Chapelle FH (1996b) Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms. Appl Environ Microbiol 62:288–291

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP (2011) Geobacter: the microbe electric’s physiology, ecology, and practical applications. In: Poole RK (eds) Advances in microbial physiology, vol 59, pp 1–100. Academic Press, Amsterdam, The Netherlands

    Google Scholar 

  • Mahadevan R, Palsson BO, Lovley DR (2011) In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. Nat Rev Microbiol 9:39–50

    CAS  PubMed  Google Scholar 

  • Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim BC, Inoue K, Mester T, Covalla SF, Johnson JP, Rotello VM, Tuominen MT, Lovley DR (2011) Tunable metallic-like conductivity in microbial nanowire networks. Nat Nanotechnol 6:573–579

    PubMed  Google Scholar 

  • McCormick ML, Bouwer EJ, Adriaens P (2002) Carbon tetrachloride transformation in a model iron-reducing culture: relative kinetics of biotic and abiotic reactions. Environ Sci Technol 36:403–410

    CAS  PubMed  Google Scholar 

  • Meckenstock RU (1999) Fermentative toluene degradation in anaerobic defined syntrophic cocultures. FEMS Microbiol Lett 177:67–73

    CAS  PubMed  Google Scholar 

  • Methe BA, Nelson KE, Eisen JA, Paulsen IT, Nelson W, Heidelberg JF, Wu D, Wu M, Ward N, Beanan MJ, Dodson RJ, Madupu R, Brinkac LM, Daugherty SC, DeBoy RT, Durkin AS, Gwinn M, Kolonay JF, Sullivan SA, Haft DH, Selengut J, Davidsen TM, Zafar N, White O, Tran B, Romero C, Forberger HA, Weidman J, Khouri H, Feldblyum TV, Utterback TR, Van Aken SE, Lovley DR, Fraser CM (2003) Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302:1967–1969

    CAS  PubMed  Google Scholar 

  • Morita M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C, Lovley DR (2011) Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. MBio 2:e00159–11

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mouser PJ, Holmes DE, Perpetua LA, DiDonato R, Postier B, Liu A, Lovley DR (2009) Quantifying expression of Geobacter spp. oxidative stress genes in pure culture and during in situ uranium bioremediation. ISME J 3:454–465

    CAS  PubMed  Google Scholar 

  • N’Guessan AL, Elifantz H, Nevin KP, Mouser PJ, Methe B, Lwoodard T, Manley K, Williams KH, Wilkins MJ, Larsen JT, Long PE, Lovley DR (2010) Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a uranium-contaminated aquifer. ISME J 4:253–266

    PubMed  Google Scholar 

  • Nercessian O, Parot S, Delia ML, Bergel A, Achouak W (2012) Harvesting electricity with Geobacter bremensis isolated from compost. PLoS One 7:e34216

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nevin KP, Lovley DR (2000) Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl Environ Microbiol 66:2248–2251

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nevin KP, Holmes DE, Woodard TL, Hinlein ES, Ostendorf DW, Lovley DR (2005) Geobacter bemidjiensis sp nov and Geobacter psychrophilus sp nov., two novel Fe(III)-reducing subsurface isolates. Int J Syst Evol Microbiol 55:1667–1674

    CAS  PubMed  Google Scholar 

  • Nevin KP, Holmes DE, Woodard TL, Covalla SF, Lovley DR (2007) Reclassification of Trichlorobacter thiogenes as Geobacter thiogenes comb. nov. J Syst Evol Microbiol 57:463–466

    CAS  Google Scholar 

  • O’Neil RA, Holmes DE, Coppi MV, Adams LA, Larrahondo MJ, Ward JE, Nevin KP, Woodard TL, Vrionis HA, N’Guessan AL, Lovley DR (2008) Gene transcript analysis of assimilatory iron limitation in Geobacteraceae during groundwater bioremediation. Environ Microbiol 10:1218–1230

    PubMed  Google Scholar 

  • Ortiz-Bernad I, Anderson RT, Vrionis HA, Lovley DR (2004) Vanadium respiration by Geobacter metalireducens: novel strategy for in situ removal of vanadium from groundwater. Appl Environ Microbiol 70:3091–3095

    PubMed Central  CAS  PubMed  Google Scholar 

  • Percent SF, Frischer ME, Vescio PA, Duffy EB, Milano V, McLellan M, Stevens BM, Boylen CW, Nierzwicki-Bauer SA (2008) Bacterial community structure of acid-impacted lakes: what controls diversity? Appl Environ Microbiol 74:1856–1868

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pilloni G, von Netzer F, Engel M, Lueders T (2011) Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP. FEMS Microbiol Ecol 78:165–175

    CAS  PubMed  Google Scholar 

  • Prakash O, Gihring TM, Dalton DD, Chin KJ, Green SJ, Akob DM, Wanger G, Kostka JE (2010) Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination. Int J Syst Evol Microbiol 60:546–553

    CAS  PubMed  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    CAS  PubMed  Google Scholar 

  • Röling WFM, van Breukelen BM, Braster M, Lin B, van Verseveld HW (2001) Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl Environ Microbiol 67:4619–4629

    PubMed Central  PubMed  Google Scholar 

  • Rooney-Varga JN, Anderson RT, Fraga JL, Ringelberg D, Lovley DR (1999) Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol 65:3056–3063

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rotaru AE, Shrestha PM, Liu FH, Ueki T, Nevin K, Summers ZM, Lovley DR (2012) Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens. Appl Environ Microbiol 78:7645–7651

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scheibe TD, Mahadevan R, Fang Y, Garg S, Long PE, Lovley DR (2009) Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microbiol Biotechnol 2:274–286

    CAS  Google Scholar 

  • Schink B (1984) Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. Nov. and evidence for propionate formation from C2 compounds. Arch Microbiol 137:33–41

    CAS  Google Scholar 

  • Schwertmann U, Cornell RM (1991) Iron oxides in the laboratory: preparation and characterization. VCh Verlagsgesellschaft mbH/VCH Publishers, Weinheim/Germany/New York

    Google Scholar 

  • Scott DT, McKnight DM, Blunt-Harris EL, Kolesar SE, Lovley DR (1998) Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ Sci Technol 32:2984–2989

    CAS  Google Scholar 

  • Selembo PA, Merrill MD, Logan BE (2010) Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells. Int J Hydrogen Energy 35:428–437

    CAS  Google Scholar 

  • Shelobolina ES, Sullivan SA, O’Neill KR, Nevin KP, Lovley DR (2004) Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid-resistant bacterium from Low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranea sp nov. Appl Environ Microbiol 70:2959–2965

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shelobolina ES, Nevin KP, Blakeney-Hayward JD, Johnsen CV, Plaia TW, Krader P, Woodard T, Holmes DE, VanPraagh CG, Lovley DR (2007) Geobacter pickeringii sp nov., Geobacter argillaceus sp nov and Pelosinus fermentans gen. nov., sp nov., isolated from subsurface kaolin lenses. Int J Syst Evol Microbiol 57:126–135

    CAS  PubMed  Google Scholar 

  • Shelobolina ES, Vrionis HA, Findlay RH, Lovley DR (2008) Geobacter uraniireducens sp nov., isolated from subsurface sediment undergoing uranium bioremediation. Int J Syst Evol Microbiol 58:1075–1078

    CAS  PubMed  Google Scholar 

  • Shi L, Squier TC, Zachara JM, Fredrickson JK (2007) Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 65:12–20

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith JA, Lovley DR, Tremblay PL (2013) Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens. Appl Environ Microbiol 79:901–907

    PubMed Central  CAS  PubMed  Google Scholar 

  • Snoeyenbos-West OL, Nevin KP, Anderson RT, Lovley DR (2000) Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments. Microb Ecol 39:153–167

    CAS  PubMed  Google Scholar 

  • Staats M, Braster M, Röling WFM (2011) Molecular diversity and distribution of aromatic hydrocarbon-degrading anaerobes across a landfill leachate plume. Environ Microbiol 13:1216–1227

    CAS  PubMed  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) A place for DNA-DNA reassociation and 16S ribosomal RNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    CAS  Google Scholar 

  • Stackebrandt E, Wehmeyer U, Schink B (1989) The phylogenetic status of Pelobacter acidigallici, Pelobacter venetianus, and Pelobacter carbinolicus. Syst Appl Microbiol 11:257–260

    CAS  Google Scholar 

  • Straub KL, Buchholz-Cleven BEE (2001) Geobacter bremensis sp nov and Geobacter pelophilus sp nov., two dissimilatory ferric-iron-reducing bacteria. Int J Syst Evol Microbiol 51:1805–1808

    CAS  PubMed  Google Scholar 

  • Straub KL, Hanzlik M, Buchholz-Cleven BEE (1998) The use of biologically produced ferrihyduite for the isolation of novel iron-reducing bacteria. Syst Appl Microbiol 21:442–449

    CAS  PubMed  Google Scholar 

  • Strycharz SM, Woodard TL, Johnson JP, Nevin KP, Sanford RA, Loffler FE, Lovley DR (2008) Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl Environ Microbiol 74:5943–5947

    PubMed Central  CAS  PubMed  Google Scholar 

  • Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413–1415

    CAS  PubMed  Google Scholar 

  • Sun J, Sayyar B, Butler JE, Pharkya P, Fahland TR, Famili I, Schilling CH, Lovley DR, Mahadevan R (2009) Genome-scale constraint-based modeling of Geobacter metallireducens. BMC Syst Biol 3:e15

    Google Scholar 

  • Sun J, Haveman SA, Bui O, Fahland TR, Lovley DR (2010) Constraint-based modeling analysis of the metabolism of two Pelobacter species. BMC Syst Biol 4:e174

    Google Scholar 

  • Sung Y, Fletcher KF, Ritalaliti KM, Apkarian RP, Ramos-Hernandez N, Sanford RA, Mesbah NM, Loffler FE (2006) Geobacter lovleyi sp nov strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ Microbiol 72:2775–2782

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tang YJJ, Chakraborty R, Martin HG, Chu J, Hazen TC, Keasling JD (2007) Flux analysis of central metabolic pathways in Geobacter metallireducens during reduction of soluble Fe(III)-nitrilotriacetic acid. Appl Environ Microbiol 73:3859–3864

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tran HT, Krushkal J, Antommattei FM, Lovley DR, Weis RM (2008) Comparative genomics of Geobacter chemotaxis genes reveals diverse signaling function. BMC Genomics 9:e471

    Google Scholar 

  • Tremblay PL, Summers ZM, Glaven RH, Nevin KP, Zengler K, Barrett CL, Qiu Y, Palsson BO, Lovley DR (2011) A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens revealed by adaptive evolution. Environ Microbiol 13:13–23

    CAS  PubMed  Google Scholar 

  • Tremblay PL, Aklujkar M, Leang C, Nevin KP, Lovley D (2012) A genetic system for Geobacter metallireducens: role of the flagellin and pilin in the reduction of Fe(III) oxide. Environ Microbiol Rep 4:82–88

    CAS  PubMed  Google Scholar 

  • Ueki T, Lovley DR (2010) Genome-wide gene regulation of biosynthesis and energy generation by a novel transcriptional repressor in Geobacter species. Nucleic Acids Res 38:810–821

    PubMed Central  CAS  PubMed  Google Scholar 

  • Validation List 107 (2006) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 56:1–6

    Google Scholar 

  • van Breukelen BM, Röling WFM, Groen J, Griffioen J, van Verseveld HW (2003) Biogeochemistry and isotope geochemistry of a landfill leachate plume. J Contam Hydrol 65:245–268

    PubMed  Google Scholar 

  • Viollier E, Inglett PW, Hunter K, Roychoudhury AN, Van Cappellen P (2000) The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Geochem 15:785–790

    CAS  Google Scholar 

  • Wagner DD, Hug LA, Hatt JK, Spitzmiller MR, Padilla-Crespo E, Ritalahti KM, Edwards EA, Konstantinidis KT, Loffler FE (2012) Genomic determinants of organohalide-respiration in Geobacter lovleyi, an unusual member of the Geobacteraceae. BMC Genomics 13:e200

    Google Scholar 

  • Weber KA, Urrutia MM, Churchill PF, Kukkadapu RK, Roden EE (2006) Anaerobic redox cycling of iron by freshwater sediment microorganisms. Environ Microbiol 8:100–113

    CAS  PubMed  Google Scholar 

  • Weelink SAB, van Doesburg W, Saia FT, Rijpstra WIC, Roling WFM, Smidt H, Stams AJM (2009) A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp nov degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiol Ecol 70:575–585

    CAS  PubMed  Google Scholar 

  • Wiatrowski HA, Ward PM, Barkay T (2006) Novel reduction of mercury(II) by mercury-sensitive dissimilatory metal reducing bacteria. Environ Sci Technol 40:6690–6696

    CAS  PubMed  Google Scholar 

  • Widdel F, Pfennig N (1982) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. 2. Incomplete oxidation of propionate by Desulfobulbus propionicus gen nov, sp nov. Arch Microbiol 131:360–365

    CAS  Google Scholar 

  • Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T (2008) Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74:792–801

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yan BZ, Wrenn BA, Basak S, Biswas P, Giammar DE (2008) Microbial reduction of Fe(III) in hematite nanoparticles by Geobacter sulfurreducens. Environ Sci Technol 42:6526–6531

    CAS  PubMed  Google Scholar 

  • Yan J, Ritalahti KM, Wagner DD, Loffler FE (2012) Unexpected specificity of interspecies cobamide transfer from Geobacter spp. to organohalide-respiring Dehalococcoides mccartyi strains. Appl Environ Microbiol 78:6630–6636

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR (2010) Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12:1011–1020

    CAS  PubMed  Google Scholar 

  • Zhang T, Bain TS, Nevin KP, Barlett MA, Lovley DR (2012) Anaerobic benzene oxidation by Geobacter species. Appl Environ Microbiol 78:8304–8310

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang XY, Ye XF, Finneran KT, Zilles JL, Morgenroth E (2013) Interactions between Clostridium beijerinckii and Geobacter metallireducens in co-culture fermentation with anthrahydroquinone-2, 6-disulfonate (AH2QDS) for enhanced biohydrogen production from xylose. Biotechnol Bioeng 110:164–172

    CAS  PubMed  Google Scholar 

  • Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, Mahadevan R, Lovley DR (2011) Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 5:305–316

    PubMed Central  PubMed  Google Scholar 

  • Zhuang K, Ma E, Lovley DR, Mahadevan R (2012) The design of long-term effective uranium bioremediation strategy using a community metabolic model. Biotechnol Bioeng 109:2475–2483

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred F. M. Röling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Röling, W.F.M. (2014). The Family Geobacteraceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39044-9_381

Download citation

Publish with us

Policies and ethics