Skip to main content

Manifold Learning Characterization of Abnormal Myocardial Motion Patterns: Application to CRT-Induced Changes

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2013)

Abstract

The present paper aims at quantifying the evolution of a given motion pattern under cardiac resynchronization therapy (CRT). It builds upon techniques for population-based cardiac motion quantification (statistical atlases, for inter-sequence spatiotemporal alignment and the definition of normal/abnormal motion). Manifold learning is used on spatiotemporal maps of myocardial motion abnormalities to represent a given abnormal pattern and to compare any individual to that pattern. The methodology was applied to 2D echocardiographic sequences in a 4-chamber view from 108 subjects (21 healthy volunteers and 87 CRT candidates) at baseline, with pacing ON, and at 12 months follow-up. Experiments confirmed that recovery of a normal motion pattern is a necessary but not sufficient condition for CRT response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner, J., Klöppel, S.: Multivariate models of inter-subject anatomical variability. Neuroimage 56, 422–439 (2011)

    Article  Google Scholar 

  2. Bijnens, B.H., Cikes, M., Butakoff, C., et al.: Myocardial motion and deformation: What does it tell us and how does it relate to function? Fetal Diagn. Ther. 32, 5–16 (2012)

    Article  Google Scholar 

  3. Bleeker, G.B., Bax, J.J., Fung, J.W.H., et al.: Clinical versus echocardiographic parameters to assess response to cardiac resynchronization therapy. Am. J. Cardiol. 97, 260–263 (2006)

    Article  Google Scholar 

  4. De Craene, M., Piella, G., Camara, O., et al.: Spatiotemporal diffeomorphic free-form deformation: Application to motion and strain estimation from 3D echocardiography. Med. Image Anal. 16, 427–450 (2012)

    Article  Google Scholar 

  5. Duchateau, N., De Craene, M., Piella, G., et al.: A spatiotemporal statistical atlas of motion for the quantification of abnormalities in myocardial tissue velocities. Med. Image Anal. 15, 316–328 (2011)

    Article  Google Scholar 

  6. Duchateau, N., De Craene, M., Piella, G., et al.: Constrained manifold learning for the characterization of pathological deviations from normality. Med. Image Anal. 16, 1532–1549 (2012)

    Article  Google Scholar 

  7. Duchateau, N., Doltra, A., Silva, E., et al.: Atlas-based quantification of myocardial motion abnormalities: added-value for understanding the effect of cardiac resynchronization therapy. Ultrasound Med. Biol. 38, 2186–2197 (2012)

    Article  Google Scholar 

  8. Fornwalt, B.K.: The dyssynchrony in predicting response to cardiac resynchronization therapy: a call for change. J. Am. Soc. Echocardiogr. 24, 180–184 (2011)

    Article  Google Scholar 

  9. Gerber, S., Tasdizen, T., Fletcher, P.T., et al.: Manifold modeling for brain population analysis. Med. Image Anal. 14, 643–653 (2010)

    Article  Google Scholar 

  10. Hastie, T., Stuetzle, W.: Principal curves. J. Am. Stat. Assoc. 84, 502–516 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lumens, J., Leenders, G.E., Cramer, M.J., et al.: Mechanistic evaluation of echocardiographic dyssynchrony indices: patient data combined with multiscale computer simulations. Circ. Cardiovasc. Imaging 5, 491–499 (2012)

    Article  Google Scholar 

  12. Miller, M.I., Qiu, A.: The emerging discipline of computational functional anatomy. Neuroimage 45, S16–S39 (2009)

    Article  Google Scholar 

  13. Parsai, C., Bijnens, B.H., Sutherland, G.R., et al.: Toward understanding response to cardiac resynchronization therapy: left ventricular dyssynchrony is only one of multiple mechanisms. Eur. Heart J. 30, 940–949 (2009)

    Article  Google Scholar 

  14. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duchateau, N. et al. (2013). Manifold Learning Characterization of Abnormal Myocardial Motion Patterns: Application to CRT-Induced Changes. In: Ourselin, S., Rueckert, D., Smith, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2013. Lecture Notes in Computer Science, vol 7945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38899-6_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38899-6_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38898-9

  • Online ISBN: 978-3-642-38899-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics