Skip to main content

Resonance and Singularities

  • Conference paper
  • First Online:
Progress and Challenges in Dynamical Systems

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 54))

  • 1146 Accesses

Abstract

The phenomenon of resonance will be dealt with from the viewpoint of dynamical systems depending on parameters and their bifurcations. Resonance phenomena are associated to open subsets in the parameter space, while their complement corresponds to quasi-periodicity and chaos. The latter phenomena occur for parameter values in fractal sets of positive measure. We describe a universal phenomenon that plays an important role in modelling. This paper gives a summary of the background theory, veined by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For simplicity we take \(\vert \varepsilon \vert < 1\) which ensures that (9) is a circle diffeomorphism; for \(\vert \varepsilon \vert \geq 1\) the mapping becomes a circle endomorphism and the current approach breaks down.

  2. 2.

    Mathematical ideas on adiabatic change were used earlier by Rayleigh and Poincaré and by Landau-Lifschitz.

  3. 3.

    For ‘historical’ reasons we use the letter a instead of α2 as we did earlier.

  4. 4.

    The co-ordinates (ζ,t) sometimes also are called co-rotating. Also think of the Lagrangean variation of constants.

  5. 5.

    Colloquially often referred to as ‘chaotic sea’.

  6. 6.

    Also known as the metric entropy conjecture.

References

  1. Arnol’d, V.I.: Small divisors I: on mappings of the circle onto itself. Am. Math. Soc. Transl. Ser. 2 46. 213–284 (1965)

    Google Scholar 

  2. Arnold, V.I.: Mathematical Methods of Classical Mechanics. GTM 60. Springer, New York (1978). 2nd edn. (1989)

    Google Scholar 

  3. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, New York (1983). Grundlehren der mathematischen Wissenschaften, vol. 250, 2nd edn. Springer (1988)

    Google Scholar 

  4. Arnold, V.I., Avez, A.: Probèmes Ergodiques de la Mécanique classique. Gauthier-Villars, Paris (1967); Ergodic Problems of Classical Mechanics. Benjamin (1968). 2nd edn. Addison-Wesley (1989)

    Google Scholar 

  5. Arnol’d, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical aspects of classical and celestial mechanics. In: Arnol’d, V.I. (ed.) Dynamical Systems III. Springer, Berlin/New York (1988). 3rd edn. Springer (2006)

    Google Scholar 

  6. Avila, A., Damanik, D.: Generic singular spectrum for ergodic Schrödinger operators. Duke Math. J. 130(2), 393–400 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baesens, C., Guckenheimer, J., Kim, S., MacKay, R.S.: Three coupled oscillators: mode-locking, global bifurcation and toroidal chaos. Phys. D 49(3), 387–475 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beersma, D.G.M., Broer, H.W., Cargar, K.A., Efstathiou, K., Hoveijn, I.: Pacer cell response to periodic Zeitgebers. Preprint University of Groningen (2011)

    Google Scholar 

  9. Bennett, M., Schatz, M.F., Rockwood, H., Wiesenfeld, K.: Huygens clocks. Proc. R. Soc. Lond. A 458, 563–579 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Braaksma, B.L.J., Broer, H.W.: On a quasi-periodic Hopf bifurcation. Annales Insitut Henri Poincaré, Analyse non linéaire 4, 115–168 (1987)

    MathSciNet  MATH  Google Scholar 

  11. Braaksma, B.L.J., Broer, H.W., Huitema, G.B.: Towards a quasi-periodic bifurcation theory. Mem. AMS 83(421), 81–175 (1990)

    MathSciNet  Google Scholar 

  12. Broer, H.W.: KAM theory: the legacy of Kolmogorov’s 1954 paper. Bull. AMS (New Series) 41(4), 507–521 (2004)

    Google Scholar 

  13. Broer, H.W.: Normal forms in perturbation theory. In: Meyers, R. (ed.) Encyclopædia of Complexity & System Science, pp. 6310–6329. Springer, New York (2009)

    Chapter  Google Scholar 

  14. Broer, H.W.: Resonance and fractal geometry. Acta Appl. Math. 120(1), 61–86 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Broer, H.W., Levi, M.: Geometrical aspects of stability theory for Hill’s equations. Arch. Ration. Mech. Anal. 131, 225–240 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Broer, H.W., Roussarie, R.: Exponential confinement of chaos in the bifurcations sets of real analytic diffeomorphisms. In: Broer, H.W., Krauskopf, B., Vegter, G. (eds.) Global Analysis of Dynamical Systems, pp. 167–210. IoP Publishing, Bristol (2001)

    Chapter  Google Scholar 

  17. Broer, H.W., Simó, C.: Hill’s equation with quasi-periodic forcing: resonance tongues, instability pockets and global phenomena. Bol. Soc. Bras. Mat. 29, 253–293 (1998)

    Article  MATH  Google Scholar 

  18. Broer, H.W., Simó, C.: Resonance tongues in Hill’s equations: a geometric approach. J. Differ. Equ. 166, 290–327 (2000)

    Article  MATH  Google Scholar 

  19. Broer, H.W., Takens, F.: Formally symmetric normal forms and genericity. Dyn. Rep. 2, 36–60 (1989)

    MathSciNet  Google Scholar 

  20. Broer, H.W., Takens, F.: Dynamical Systems and Chaos. Applied Mathematical Sciences, vol. 172. Springer, New York (2011)

    Google Scholar 

  21. Broer, H.W., Vegter, G.: Subordinate Sil’nikov bifurcations near some singularities of vector fields having low codimension. Ergod. Theory Dyn. Syst. 4, 509–525 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Broer, H.W., Vegter, G.: Bifurcational aspects of parametric resonance. Dyn. Rep. New Ser. 1, 1–51 (1992)

    Article  MathSciNet  Google Scholar 

  23. Broer, H.W., Vegter, G.: Generic Hopf-Neĭmark-Sacker bifurcations in feed forward systems. Nonlinearity 21, 1547–1578 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Broer, H.W., Huitema, G.B., Takens, F.: Unfoldings and bifurcations of quasi-periodic tori. Mem. Am. Math. Soc. 83(#421), 1–82 (1990)

    Google Scholar 

  25. Broer, H.W., Simó, C., Tatjer, J.C.: Towards global models near homoclinic tangencies of dissipative diffeomorphisms. Nonlinearity 11(3), 667–770 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Broer, H.W., Simó, C., Vitolo, R.: Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing. Nonlinearity 15(4), 1205–1267 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Broer, H.W., Golubitsky, M., Vegter, G.: The geometry of resonance tongues: a singularity theory approach. Nonlinearity 16, 1511–1538 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Broer, H.W., Hanßmann, H., Jorba, Á., Villanueva, J., Wagener, F.O.O.: Normal-internal resonances in quasi-periodically forces oscillators: a conservative approach. Nonlinearity 16, 1751–1791 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Broer, H.W., Puig, J., Simó, C.: Resonance tongues and instability pockets in the quasi-periodic Hill-Schrödinger equation. Commun. Math. Phys. 241, 467–503 (2003)

    MATH  Google Scholar 

  30. Broer, H.W., Golubitsky, M., Vegter, G.: Geometry of resonance tongues. In: Singularity Theory. Proceedings of the 2005 Marseille Singularity School and Conference, Marseille, pp. 327–356 (2007)

    Google Scholar 

  31. Broer, H.W., Hanßmann, H., Hoo, J.: The quasi-periodic Hamiltonian Hopf bifurcation. Nonlinearity 20, 417–460 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Broer, H.W., Hoo, J., Naudot, V.: Normal linear stability of quasi-periodic tori. J. Differ. Equ. 232, 355–418 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Broer, H.W., Efstathiou, K., Subramanian, E.: Robustness of unstable attractors in arbitrarily sized pulse-coupled systems with delay. Nonlinearity 21, 13–49 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Broer, H.W., Efstathiou, K., Subramanian, E.: Heteroclinic cycles between unstable attractors. Nonlinearity 21, 1385–1410 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Broer, H.W., Hanßmann, H., You, J.: On the destruction of resonant Lagrangean tori in Hamiltonian systems. In: Johann, A., Kruse, H.-P., Rupp, F., Schmitz, S. (eds.) Recent Trends in Dynamical Systems, Proceedings of a Conference in Honor of Jürgen Scheurle. Springer Proceedings in Mathematics & Statistics, vol. 35, Chapter 13 (2013 to appear). ISBN 978-3-0348-0450-9

  36. Broer, H.W., Holtman, S.J., Vegter, G.: Recognition of the bifurcation type of resonance in a mildly degenerate Hopf-Neĭmark-Sacker families. Nonlinearity 21, 2463–2482 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Broer, H.W., Simó, C., Vitolo, R.: The Hopf-Saddle-Node bifurcation for fixed points of 3D-diffeomorphisms, analysis of a resonance ‘bubble’. Phys. D 237, 1773–1799 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Broer, H.W., Simó, C., Vitolo, R.: The Hopf-Saddle-Node bifurcation for fixed points of 3D-diffeomorphisms, the Arnol’d resonance web. Bull. Belg. Math. Soc. Simon Stevin 15, 769–787 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Broer, H.W., Ciocci, M.C., Hanßmann, H., Vanderbauwhede, A.: Quasi-periodic stability of normally resonant tori. Phys. D 238, 309–318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Broer, H.W., Holtman, S.J., Vegter, G., Vitolo, R.: Geometry and dynamics of mildly degenerate Hopf-Neĭmarck-Sacker families near resonance. Nonlinearity 22, 2161–2200 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Broer, H.W., Holtman, S.J., Vegter, G.: Recognition of resonance type in periodically forced oscillators. Phys.-D 239(17), 1627–1636 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Broer, H.W., Simó, C., Vitolo, R.: Chaos and quasi-periodicity in diffeomorphisms of the solid torus. DCDS-B 14(3), 871–905 (2010)

    Article  MATH  Google Scholar 

  43. Broer, H.W., Dijkstra, H.A., Simó, C., Sterk, A.E., Vitolo, R.: The dynamics of a low-order model for the Atlantic Multidecadal Oscillation. DCDS-B 16(1), 73–102 (2011)

    Article  MATH  Google Scholar 

  44. Broer, H.W., Holtman, S.J., Vegter, G., Vitolo, R.: Dynamics and Geometry Near Resonant Bifurcations. Regul. Chaotic Dyn. 16(1–2), 39–50 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Broer, H.W., Hanßmann, H., Wagener, F.O.O.: Quasi-periodic bifurcation theory: the geometry of kam (2012). (to appear)

    Google Scholar 

  46. Chenciner, A.: Bifurcations de points fixes elliptiques. I. Courbes invariantes. Publ. Math. IHÉS 61, 67–127 (1985)

    MathSciNet  MATH  Google Scholar 

  47. Chenciner, A.: Bifurcations de points fixes elliptiques. II. Orbites périodiques et ensembles de Cantor invariants. Invent. Math. 80, 81–106 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  48. Chenciner, A.: Bifurcations de points fixes elliptiques. III. Orbites périodiques de “petites” périodes et élimination résonnante des couples de courbes invariantes. Publ. Math. IHÉS 66, 5–91 (1988)

    MathSciNet  MATH  Google Scholar 

  49. Ciocci, M.C., Litvak-Hinenzon, A., Broer, H.W.: Survey on dissipative kam theory including quasi-periodic bifurcation theory based on lectures by Henk Broer. In: Montaldi, J., Ratiu, T. (eds.) Geometric Mechanics and Symmetry: The Peyresq Lectures. LMS Lecture Notes Series, vol. 306, pp. 303–355. Cambridge University Press, Cambridge (2005)

    Chapter  Google Scholar 

  50. Correia, A., Laskar, J.: Mercury’s capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics. Nature 429, 848–850 (2004)

    Article  Google Scholar 

  51. Cushman, R.H., van der Meer, J.C.: The Hamiltonian Hopf bifurcation in the Lagrange top. In: Albert, C. (ed.) Géometrie Symplectique et Méchanique, Colloque International, La Grande Motte, 23–28 Mai 1988. Lecture Notes in Mathematics, vol. 1416, pp. 26–38 (1990)

    Article  Google Scholar 

  52. de Sitter, W.: On the libration of the three inner large satellites of Jupiter. Publ. Astron. Lab. Gron. 17, 1–119 (1907)

    Google Scholar 

  53. de Sitter, W.: New mathematical theory of Jupiters satellites. Ann. Sterrewacht Leiden, XII (1925)

    Google Scholar 

  54. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems, 2nd edn. Addison-Wesley, Redwood City (1989). 2nd edn. Westview Press (2003)

    Google Scholar 

  55. Eliasson, L.H.: Floquet solutions for the one-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys. 146, 447–482 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  56. Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities. Springer, New York (1973). GTM, vol. 14. Springer (1973)

    Google Scholar 

  57. Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory Vol. I. Springer, New York (1985)

    Book  Google Scholar 

  58. Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory Vol. II. Applied Mathematical Sciences, vol. 69 Springer, New York (1988)

    Google Scholar 

  59. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 5th edn. Applied Mathematical Sciences, vol. 42. Springer, New York (1997)

    Google Scholar 

  60. Hopf, E.: A mathematical example displaying features of turbulence. Commun. (Pure) Appl. Math. 1, 303–322 (1948)

    Google Scholar 

  61. Hopf, E.: Repeated branching through loss of stability, an example. In: Diaz, J.B. (ed.) Proceedings of the Conference on Differential Equations, College Park, MD 1955, pp. 49–56. University Maryland book store (1956)

    Google Scholar 

  62. Huygens, C.: Œvres complètes de Christiaan Huygens., vol. 5, pp. 241–263 and vol. 17, pp. 156–189. Martinus Nijhoff, La Haye (1888–1950)

    Google Scholar 

  63. Kuznetsov, Yu.A.: Elements of Applied Bifurcation Theory, 3rd edn. Applied Mathematical Sciences, vol. 112. Springer, New York (2004)

    Google Scholar 

  64. Landau, L.D.: On the problem of turbulence. Dokl. Akad. Nauk SSSR 44, 339–342 (1944)

    Google Scholar 

  65. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd edn. Pergamon, Oxford/New York (1987)

    MATH  Google Scholar 

  66. Newhouse, S.E., Palis, J., Takens, F.: Bifurcations and stability of families of diffeomorphisms. Publ. Math. IHES 57, 5–71 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  67. Newhouse, S.E., Ruelle, D., Takens, F.: Occurrence of strange Axiom A attractors near quasi-periodic flows on \({\mathbb{T}}^{m},\) m ≤ 3. Commun. Math. Phys. 64, 35–40 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  68. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, New York (1977)

    Google Scholar 

  69. Moser, J.K.: On invariant curves of area-preserving mappings of an annulus. Nachrichten Akademie Wissenschaften Göttingen, Mathematisch–Physikalische Klasse II. 1, 1–20 (1962)

    Google Scholar 

  70. Moser, J.K.: Lectures on Hamiltonian systems. Mem. Am. Math. Soc. 81, 1–60 (1968)

    Google Scholar 

  71. Moser, J.K.: Stable and Random Motions in Dynamical Systems, with Special Emphasis to Celestial Mechanics. Annals Mathematical Studies, vol. 77. Princeton University Press, Princeton (1973). Princeton Landmarks in Mathematics (2001)

    Google Scholar 

  72. Moser, J.K., Pöschel, J.: An extension of a result by Dinaburg and Sinai on quasi-periodic potentials. Comment. Math. Helv. 59, 39–85 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  73. Nitecki, Z.: Differentiable Dynamics. An Introduction to the Orbit Structure of Diffeomorphisms. Massachusetts Institute of Technology, Cambridge (1971)

    MATH  Google Scholar 

  74. Oxtoby, J.: Measure and Category. Springer, New York (1971). 2nd edn. Springer (1980)

    Google Scholar 

  75. Palis, J., Takens, F.: Hyperbolicity & Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Cambridge University Press, Cambridge/New York (1993)

    MATH  Google Scholar 

  76. Poincaré, J.H.: Les Méthodes Nouvelles de la Mécanique Céleste I, II, III. Gauthier-Villars, Paris (1892, 1893, 1899). Republished by Blanchard (1987)

    Google Scholar 

  77. Pogromsky, A., Rijlaarsdam, D., Nijmeijer, H.: Experimental Huygens synchronization of oscillators. In: Thiel, M., Kurths, J., Romano, M.C., Moura, A., Károlyi, G. (eds.) Nonlinear Dynamics and Chaos: Advances and Perspectives. Springer Complexity, pp. 195–210. Springer, New York/Berlin/Heidelberg (2010)

    Chapter  Google Scholar 

  78. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971); 23, 343–344 (1971)

    Google Scholar 

  79. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems, Rev. 2nd edn. Applied Mathematical Sciences, vol. 59. Springer, New York (2007)

    Google Scholar 

  80. Siegel, C.L., Moser, J.K.: Lectures on Celestial Mechanics. Springer, Berlin/New York (1971)

    Book  MATH  Google Scholar 

  81. Simon, B.: Operators with singular continuous spectrum: I. General operators. Ann. Math. 141, 131–145 (1995)

    Article  MATH  Google Scholar 

  82. Sterk, A.E., Vitolo, R., Broer, H.W., Simó, C., Dijkstra, H.A.: New nonlinear mechanisms of midlatitude atmospheric low-frequency variability. Phys. D 239(10), 702–718 (2010)

    Article  MATH  Google Scholar 

  83. Stoker, J.J.: Nonlinear Vibrations in Mechanical and Electrical Systems, 2nd edn. Wiley, New York (1992)

    MATH  Google Scholar 

  84. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Addison Wesley, Reading (1994)

    Google Scholar 

  85. Takens, F.: Forced oscillations and bifurcations. In: Applications of Global Analysis I. Communications of the Mathematical Institute, Rijksuniversiteit Utrecht (1974). In: Broer, H.W., Krauskopf, B., Vegter, G. (eds.) Global Analysis of Dynamical Systems. IoP Publishing, pp. 1–62 (2001)

    Google Scholar 

  86. Thom, R.: Stabilité Structurelle et Morphogénèse. Benjamin, Reading (1972). Addison-Wesley (1989)

    Google Scholar 

  87. Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems. Universitext, 2nd edn. Springer, Berlin (1996). Universitext, 2nd edn. Springer (2000)

    Google Scholar 

  88. Vitolo, R., Broer, H.W., Simó, C.: Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems. Regul. Chaotic Dyn. 16(1–2), 154–184 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  89. Vanderbauwhede, A.: Branching of periodic solutions in time-reversible systems. In: Broer, H.W., Takens, F. (eds.) Geometry and Analysis in Non-linear Dynamics. Volume 222 of Pitman Research Notes in Mathematics, pp. 97–113. Pitman, London (1992)

    Google Scholar 

  90. Vanderbauwhede, A.: Subharmonic bifurcation at multiple resonances. In: Eliady, S., Allen, F., Elkhaeder, A., Mughrabi, T., Saleh, M. (eds.) Proceedings of the Mathematics Conference, (Birzeit August 1988), pp. 254–276. World Scientific, Singapore (2000)

    Google Scholar 

  91. van der Pol, B.: De amplitude van vrije en gedwongen triode-trillingen. Tijdschr. Ned. Radiogenoot. 1, 3–31 (1920)

    Google Scholar 

  92. van der Pol, B.: The nonlinear theory of electric oscillations. Proc. Inst. Radio Engl. 22, 1051–1086 (1934) Reprinted in: Selected Scientific Papers. North-Holland (1960)

    Google Scholar 

Download references

Acknowledgements

The author thanks Konstantinos Efstathiou, Aernout van Enter and Ferdinand Verhulst for their help in the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk W. Broer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Broer, H.W., Vegter, G. (2013). Resonance and Singularities. In: Ibáñez, S., Pérez del Río, J., Pumariño, A., Rodríguez, J. (eds) Progress and Challenges in Dynamical Systems. Springer Proceedings in Mathematics & Statistics, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38830-9_7

Download citation

Publish with us

Policies and ethics